
 Advanced search

Linux Journal Issue #106/February 2003

Features

Koha: a Gift to Libraries from New Zealand by Pat Eyler
Here's how some libraries are serving customers with free
software.

Understanding and Replacing Microsoft Exchange by Tom Adelstein
Replace that troublesome closed mail and calendar server.

Scaling Linux to New Heights: the SGI Altix 3000 System by Steve
Neuner

Find out how the Altix 3000 happened, and how it's performing.

Indepth

Inside the Intel Compiler by Dale Schouten, Xinmin Tian, Aart Bik
and Milind Girkar

The optimizations and features of Intel's complier for the IA-32
architecture.

Large-Scale Mail with Postfix, OpenLDAP and Courier by Dave Dribin
and Keith Garner

Here's a flexible solution for hosting mail for many domains on
one server.

Teaching Linux in K-12 School by Michael Surran
Kids at the Greater Houlton Christian Academy are growing up
with Tux.

Removing Red-Eye with The GIMP by Eric Jeschke
Small, convenient cameras are especially vulnerable to the
dreaded red-eye effect. Fix it.

A Linux-Based Steam Turbine Test Bench by Alexandr E. Bravo
From safety controls to a convenient web front end, Linux is an
essential part of this lab.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/106/6350.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6368.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6440.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/4885.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/5917.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6349.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425.html

Embedded

Driving Me Nuts The USB Serial Driver Layer by Greg Kroah-Hartman

Toolbox

Kernel Korner The Linux USB Input Subsystem, Part I by Brad
Hards
At the Forge Choosing Tools by Reuven M. Lerner
Cooking with Linux Charting the Enterprise by Marcel Gagné
Paranoid Penguin An Introduction to FreeS/WAN, Part II by Mick
Bauer

Columns

Linux for Suits Caring Less by Doc Searls
EOF Don't Code for Linux by Haarvard Nord

Departments

Letters
upFRONT
From the Editor
On the Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6434.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6396.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6431.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6430.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6427.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6417.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6406.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6441.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6462.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6458.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6457.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6456.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Koha: a Gift to Libraries from New Zealand

Pat Eyler

Issue #106, February 2003

Free software helps librarians serve the public on a reasonable budget.

The Maori word for a gift or donation is koha. It's also an integrated library
system from New Zealand. Written for the Horowhenua Library Trust (HLT), it
was licensed under the GPL and is now in use by libraries around the world.

History of the Project

In 1999, HLT made a momentous decision. They were using a 12-year-old
integrated library system (ILS) that was no longer being developed. They knew
the system wasn't Y2K-compliant, and they realized it no longer fit their needs.
HLT also knew that buying a new system would cost them a lot of money up
front and would require capital improvements they couldn't afford to make
(communication lines and gear to support the new system).

Considering all of these factors, HLT, in consultation with Katipo
Communications, decided to write their own system. They then decided to
release this new system under the GPL, ensuring that other libraries could
benefit from the work and also cooperate in future development of the system.
This decision has had far-reaching effects.

Koha was developed during the fourth quarter of 1999 and went into
production on January 1, 2000. There was a brief flurry of work on the system,
and it was released to the world early that year. Koha won two awards in 2000:
the 3M award for Innovation in Libraries and the ANZ Interactive Award
(Community/Not-for-Profit Category).

Initially, Koha was picked up by other libraries in New Zealand (many of them
hiring Katipo for support). One early adopter, Mike Mylonas, caught the vision
of open-source software in libraries and began to contribute to the project.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Mike currently supports Koha for four private libraries, one for his current
employer and three for nonprofit organizations.

It didn't take long for Koha to cross the Pacific. In the fall of 2000 the rural Coast
Mountain school district in British Columbia, Canada, was looking for a solution
for their library needs. They had been running a home-brew system built on
Apple II computers, and it had finally died. Finding the money for a proprietary
solution would be difficult (a small elementary school in New England recently
received a quote for $20,000 to install a new ILS—proprietary library
automation isn't cheap), so they put one of their network technicians to the
task of finding a better option.

Steve Tonnesen, Coast Mountain's network engineer, came across Koha and
started to evaluate it. It took him about two days to get Koha up and running.
Once he had that base to work from, he starting hacking. He cleaned up the
circulation interface, added importing tools and wrote a Z39.50 client for
querying other libraries. Z39.50 is a standard protocol libraries use to exchange
data about books. Word of this new option spread quickly, and he soon had
three schools running the new system. Steve's changes went back into the main
Koha system, and he became a member of the development team.

During April and May of 2002, Koha development took another big step. Project
leadership always had come from Katipo, but the development team was now
much more international and new development goals were being proposed.
One of the first steps was the beginning of the 1.2 release cycle. These releases
have focused on building basic functionality and greater stability. So far, there
have been four releases in this series. New features include an installation
script, a fully template-driven on-line public access catalog (OPAC), which
supports both translation and customization and bundled user documentation.

Right now, development is running in earnest on the 1.4 series, which features
a new database schema that supports several flavors of MAchine Readable
Cataloging (MARC), the cataloging standard used by libraries. The first
development release in this series (1.3.0) was made on September 24, 2002. A
second release occurred in October, and a 1.4.0 release is expected to occur in
the first quarter of 2003.

Using and Maintaining Koha

Koha is pretty undemanding as library systems go and runs handily on a stock
Linux server. HLT is a library with 25,000 patrons at four locations and a
collection of 80,000 items. They run over 1,200 transactions a day on a system
with dual P3 1GHz processors and 1GB of RAM.

At the Immaculate Heart of Mary School library in Madison, Wisconsin, Robert
Maynord installed Koha on an AMD 1800-based system with 256MB of RAM.
Coast Mountain's systems run on 200MHz Pentiums with 64MB of RAM located
in each school.

Getting Koha running in a library used to be a rather daunting task, but two
easy methods now are available. The easiest method is to download the CD
image, burn a copy with a CD burner and boot the new Koha server from the
CD. You also can use the install script to set up Koha on your hardware.

The CD can be run as a demo system, using the included data, or it can be used
as your server. If you choose to use it as your server, you will need to create a
set of data files on your server's hard drive. The CD provides an interactive tool
to do this.

If you'd rather install your own copy, the process is a bit more involved, but it
still is not difficult. Before you get started, you should make sure some basic
components are installed, namely Perl, Apache and MySQL. You'll need a few
Perl modules as well, but the install script helps you take care of those. The
install script has made installing Koha pretty painless. An upgrade script also
has been written to help ease the burden of keeping the system up to date.

The Business Case for Libraries

Proprietary ILS packages are expensive beasts. A larger library may pay well in
excess of $500,000 US for the server, clients and software, and it still has yearly
license and support fees to worry about. Once a library has bought their
system, they experience a high barrier to change as well. Data is most often
kept in proprietary formats from which it is difficult to export—in some cases,
the data is actually “owned” by the system vendor.

As with all non-free software, customers are left at the mercy of their vendors
for enhancements and customizations. Library system vendors historically have
been slow to provide innovative new options. Although user groups exist for
many of the existing systems, they seem to be more like mutual support
groups than sources of feedback for the vendors. A worse fate is in store for
those whose ILS vendor goes out of business or is bought by another vendor.

This situation presents a great opportunity for free software. It's an opportunity
that's not lost on librarians either, at least not all of them. There is still a great
deal of ignorance and inertia to overcome. During an interview for the 2002
American Library Association's (ALA) presidential election this past spring, the
candidates were asked what were their stands on free software. One of the
responses boiled down to, “We need to support standards and let the vendors
work out how to provide the solutions we need.”

More encouraging signs are emerging. The ALA has an information technology
interest group, which reviewed open-source software in the March 2002 edition
of their journal. Some of the articles were favorable, while others expressed a
lack of confidence in free software's ability to produce a viable ILS. The
definition of a viable ILS seems to vary considerably from library to library.

Some of the brightest lights come from the small, but growing open-source
subculture, within the library community. The best example of this is the Open
Source for Libraries group, hosted at www.oss4lib.org, which maintains a news
site and mailing list. usr/lib/info (www.usrlib.info) is another group with a
similar focus but a less technical approach.

A number of presentations made at library conferences in 2002 offered more
encouraging signs. In October 2002, Chris Cormack (one of the original Katipo
developers of Koha) was at the Ohio Library Conference to talk about what
we've done and where we're going. Open-source software also got on the
program at the Michigan Library Association Conference, the British Columbia
Library Association Conference and Access 2002, a Canadian conference on
internet-based technology for libraries.

Perhaps the greatest indicator of our success is that libraries have started to
sponsor the development of features they feel are important. Sometimes this
patronage is direct, as with Nelsonville Public Library, which contracted with
one of the core Koha developers to finish work on its internal use of MARC. In
other cases, the link is less direct, as is the case with recent work done by
another developer being paid by a library automation vendor to develop a
Koha solution for the vendor's customer.

Free Software and Librarians, a Natural Match

Librarians espouse many of the same ideals that drive the free software
community. They collaborate and communicate; they work hard to share the
results of their work with one another. They understand freedom and feel that
it's an important value. That more librarians aren't actively using and
evangelizing free software is an indictment against us for not letting them in on
our secret.

It's important that we not think we'd be munificent benefactors, bringing a sack
full of goodies to share. We can learn a lot from librarians as well. They have a
number of skills that we, as a community, lack.

One of the key skills librarians bring to the table is information architecture.
Librarians have spent a long time organizing information and making it
accessible. If these skills could be harnessed in the free software community,
we might see less duplication of efforts due to ignorance of existing projects,

http://www.oss4lib.org
http://www.usrlib.info

better cooperation between projects and easier acquisition of information by
new developers and users.

Librarians also have been around as a group much longer, and they are fixtures
in the academic community as well. This presence, and the established
connections that come with it, could pay off handsomely if we used them to
help spread the work of free software.

Librarians also could play a key role in creating and improving documentation
in free software projects. Librarians tend to be good editors; they also have a
good sense of what questions people tend to ask—the kind of thing you really
want in your documentation. It also doesn't hurt that they have an expectation
that documentation and support will be there. I have received personal mail
(and phone calls) from librarians since my earliest involvement in Koha—
writing good documentation becomes more attractive when you're faced with
the alternative.

Librarians also are more likely to be involved in direct communication with end
users than are most free software hackers. They are at the forefront of user-
interface questions and internationalization issues. Putting that experience to
work in creating user-friendly interfaces and documentation would be a great
boon to most projects. Librarians also are much less forgiving of the
technology; it has to run, all the time and within much tighter parameters than
do a lot of other types of applications.

In recent years, open-source developers have become more political. Librarians
still have a significant leg up on us in this area, however. What's more, their
political ends overlap significantly with our own. Working together to help
ensure open access to information, widespread adoption of free software and
improved educational opportunities would be a win for both sides.

Finally, librarians tend to do a good job of engaging the public. They advertise
to, interact with and provide services for our communities. They are seen as
trusted sources of information, true public servants. If libraries become
staunch bastions of the concepts behind free software, we gain a tremendous
ally in reaching out to those who don't yet use or understand free software.

Looking Ahead

A lot of opportunities are on the horizon for Koha. As the 1.4 release series
stabilizes, the developers' eyes have already targeted a number of new
projects. One of the areas starting to get more attention is translations. French
and German teams are already in place, and interest in Italian, South African
and Spanish groups has started to build. (A nice side effect of this work is, we're
gaining experience here that can help other free software projects.)

Right now, Koha is installed in libraries with collections of up to about 300,000
items. This is still on the small end of medium-sized libraries. Work to enable
Koha to scale well past that is already on the drawing boards. The search tools
are being rewritten to improve their efficiency and allow new searching
options.

Work is also underway to build a reporting API and a number of bundled
reports for Koha. These reports range from inventory checking, to financial
reports and into more esoteric realms like “weeding”, or removing infrequently
used items.

A bundled Z39.50 server and support for NCIP, a library protocol for handling
interlibrary requests, are both in development and are being sponsored by
libraries interested in using Koha. These new features will allow a Koha-based
library to participate in larger library communities, including interlibrary loan
programs, and to function as a solution for “union” catalogs, catalogs that
integrate all of the libraries in a region.

Members of the Koha community have started a strategic discussion of what
Koha needs to provide to continue to thrive. This project is hosted at
www.kohalabs.com/projects/koha2010 and welcomes new participants.

So What Is an Integrated Library System (ILS)?

Resources

email: pate@eylerfamily.org

Pat Eyler is a Ruby, Perl and Linux geek. Currently he is the Kaitiaki (manager) of
the Koha Project. When he's not playing with computers, he likes to read, cook
and spend time with his kids.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.kohalabs.com/projects/koha2010
https://secure2.linuxjournal.com/ljarchive/LJ/106/6350s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6350s2.html
mailto:pate@eylerfamily.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Understanding and Replacing Microsoft Exchange

Tom Adelstein

Issue #106, February 2003

The hardest-to-replace Microsoft server software is the expensive, frustrating
Exchange. Here's how IBM and Bynari sent it packing.

Linux by itself provides a formidable set of internet applications for
mainframes, which have always needed them. IBM's eServer strategy seemed
incomplete without a robust set of internet tools, which it promised to provide
to all of its brands. Near the end of calendar year 2000, IBM demonstrated it
could host a thousand instances of Linux on a single S/390 mainframe.

Figure 1. One mainframe supports thousands of Linux instances.

Even so, IBM realized that web servers and GNU applications didn't provide a
complete value proposition. IBM needed an application that made Linux a host
that reached further into mainstream computing. So they made a call on us.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In April 2001, when the sales manager for IBM's zSeries, the new name for the
S/390, visited our company, Bynari, Inc., I did not understand his interest. After
his visit, I understood it perfectly. Bynari, Inc. became IBM's first Linux
Influencer Partner.

E-Mail, the “Killer Application”

Initially, people knew us for making Linux and UNIX clients talk to Microsoft
Exchange servers. Looking to broaden our market, I found the “Exchange
Replacement HOWTO” by Johnson and Mead (www.bynari.net/
whitepapers_howto.html). Using their work as a guide, we built a server for our
Linux client and Microsoft Outlook. Our server and its Outlook Configuration
Guide caught on with the reseller channel.

We didn't know anyone at IBM when we ported our server code to a Linux
instance running on an S/390 Multiprise 3000. Jimmy Lee, then with Equant,
provided the resources to see if we could do it. Gary Ernst of Equant configured
the S/390 instance of Linux and provided assistance in getting our server to
work.

As long as Microsoft Outlook had an Internet Mail Only mode and provided
peer-to-peer folder sharing, we had a product that allowed UNIX and Outlook
clients to schedule meetings and delegate calendar tasks. Our server scaled
nicely, and we mimicked the Exchange global address list (GAL) while providing
views of users' free/busy time and a decent administrative interface.

But then Microsoft released Office XP and made major changes in Outlook.
Suddenly, our products needed server-side calendaring. We feared the growing
appetite of IBM enterprise customers for a low-cost server solution for Outlook
might wane. Therefore, we needed peer-to-peer calendar sharing in Outlook's
Internet Mail Only mode, or we needed something on the server side.

Forty-Five Days to Create a Solution

With the January 2001 LinuxWorld Conference & Expo approaching, IBM
continued marketing our server, somewhat blind to the needs of Outlook XP
users. I knew we had to do something and do it fast or lose IBM's trust. At that
time, the person who best understood the market problem was Roger Luca of
Mainline Information Systems.

Fortunately, Roger and I developed a good working relationship. With Roger at
the head of sales and marketing, Mainline became the largest reseller of IBM
mainframes. They also were our biggest supporter outside IBM. Roger provided
us with hardware resources to help us build server-side calendaring into our

http://www.bynari.net/whitepapers_howto.html
http://www.bynari.net/whitepapers_howto.html

product, as well as with people to support us if we ran into hardware-related
problems.

Surprising the Development Team

Imagine having completed an exhaustive year of development. You have trips
scheduled for the holidays and other plans. Then you get a call on your cell
phone; your boss asks you to attend an important meeting. That's what
happened in our shop. I could hear the dread in the developers' voices when
they answered my call.

We met on November 7, 2001, to see if we could deliver a server-side calendar
solution by Christmas. Mainline had several sales pending, and they needed
that functionality. Two of my people agreed to work with me to get the solution.

Technology Challenges Not for the Faint of Heart

As the senior developer, I provided the project framework. In theory, a project
has a variety of phases and processes. To shorten the project's life, I instituted
a three-step approach that called for research, invention and execution. I gave
each phase a milestone. So instead of starting with code, we started browsing
the Internet and any books we could find.

Following a week of intensive research, we discovered our challenges. We had
to figure out how Microsoft's DCE-RFC protocol stored and moved calendar
events around. We had to interpret the stored data, provide a format that we
could store on an IMAP server and then forward the data to an Outlook client in
its familiar schema. We also had to provide access control over those
information stores to allow a user to appoint and delegate control over his or
her calendar to other users with varying permission levels.

We spent another intense week researching and discovered a consensus. Every
expert, newsgroup, Outlook specialist and company that tried said one could
not create a Microsoft Outlook calendar store on an IMAP server. Here's how
we did it.

Forget the Transport and Focus on the Data

First, we observed that Outlook did around 95% of the work in the Microsoft
Exchange model. Exchange, as its name implies, transfers data between or
among Outlook users. Even so, Exchange controlled the transport protocol and
that presented a problem. People use the term MAPI to describe the Exchange
protocol for transferring data among Outlook users. I don't see MAPI as being
the appropriate term.

When intercepting Outlook messages, we discovered large arrays of binary data
instead of text. I recognized the data but didn't realize where I had seen it
before.

The Different Faces of Outlook

Outlook runs in two different modes: Corporate Workgroup mode and Internet
Mail Only mode. In the Corporate Workgroup mode, Microsoft turns on all of
Outlook's highly regarded features. In the Internet Mail Only mode, Microsoft
uses a completely different and undocumented application program interface
(API) with a limited feature set. Without an Exchange server, Outlook doesn't
function in the Corporate Workgroup mode at all and has a limited set of
features.

In Outlook's Workgroup mode, or when connected to an Exchange server, its
data moves around in binary form. That binary data becomes impossible to
recognize by an uninformed observer.

While researching, I found a developers' site on SourceForge.net that was
porting Open DCE to Linux. I e-mailed one of the developers who wrote back
and mentioned that the Open Group contributed the code.

I went to the Open Group's web site, searched the archives and found an old
article mentioning that Microsoft had licensed DCE. We downloaded the Open
DCE code and, using the engine, shook hands with Outlook and then Exchange.
We knew more about the transport protocol as a result. We also understood
the presence of binary data streams.

What we discovered is Microsoft uses the distributed computing environment
(DCE) as its transport when using Exchange and Outlook in the Corporate
Workgroup mode. Microsoft provides a programming interface on top of DCE,
which it calls MAPI. Still, underneath MAPI exists an open standards-based
protocol (DCE), which Microsoft bought from the Open Group and modified.

One of the default functions in DCE automatically translates ASCII text into
binary objects. Microsoft leaves the binary object undocumented. So most of
the MAPI properties programmers tag wind up as binary code they would not
recognize. To make matters a little more complex, Microsoft embeds the binary
property code in a large array of null binary data, thus hiding it.

We began to understand the transport, but we realized that Outlook sent MIME
attachments to other Outlook clients. Those attachments did not transform
themselves into binary data. We concluded that Outlook also used
encapsulation to pass attachments around, which led us to the TNEF object.

TNEF

Microsoft Exchange uses a number of programs it calls “service providers” that
Linux users might call dæmons. Exchange service providers handle objects,
which have state and behavior.

Transport neutral encapsulation format (TNEF) is a method to pass ASCII text,
other files and objects, along with binary message data. The binary message
data makes up the bulk of each TNEF object. TNEF encapsulates MAPI
properties into a binary stream that accompanies a message through
transports and gateways. Outlook can decode the encapsulation to retrieve all
the properties of the original message. The TNEF object hides in MIME as an
attachment.

When we found the properties, which created calendar events, we built a TNEF
encoder and soon began sending calendar events to and from Outlook clients
with SMTP. We immediately recognized that we could use internet transport
protocols and turn on Microsoft's Corporate Workgroup mode without MAPI.
We knew we had arrived when we saw Microsoft Knowledge Base Article
Q197204, which says that Microsoft does not support our transport protocol in
the Workgroup mode.

Exchange Client Extensions

With our primary goal being server-side calendaring, we needed to create a
message store to hold our Outlook client objects. As we used an IMAP server,
we needed IMAP support, which Microsoft did not provide in the Workgroup
mode. So we had to find a way to add IMAP client support to Outlook. The
facilitator for adding functionality to an existing Outlook client involved what
most people think of as a plugin.

When Microsoft first released Exchange, Outlook didn't exist. Instead, Microsoft
provided a set of Exchange messaging clients for its different Windows
operating systems. Microsoft also provided an extensible architecture for those
Exchange messaging clients. Client extensions provided developers with a way
to change the default behavior of the Exchange client. When Microsoft released
Outlook, it continued providing support for the Exchange client extension
architecture for compatibility with existing client extension DLLs.

Client extensions allow one to alter the default behavior of the client. Microsoft
saw the advantages of an extension as a convenient way to integrate
customized features and new behavior directly into the client, instead of having
to write a separate MAPI application. We, however, saw extensions as a way to
add IMAP client services to Outlook in the Workgroup mode. Using this
architecture, we added commands to Outlook menus, custom buttons to the

toolbars and the ability to preprocess outgoing and incoming messages with
IMAP client services.

Luckily, we had already written client libraries for IMAP when we built our Linux
client the previous year. We simply needed to port them to Windows. Our
familiarity with the function calls, headers and protocols reduced our overall
effort.

Once we built a Microsoft DLL for the client functions, we added it as an
Outlook extension. Luckily, it worked the first time we tried it. By choosing the
rich text format (RTF) for mail and meeting invitations, our TNEF objects
attached themselves to the messages. Because Outlook created the TNEF
objects, it exchanged them without any problems.

At this point, we uploaded our messages to our IMAP folders using the
Microsoft .pst file as store and swap space. Staying connected to Exchange and
using our server for message stores, we noticed compatibility between the two
systems. We dragged and dropped objects from the Exchange folders into our
IMAP folders. By doing this we discovered that tasks, journal entries, calendar
events and so on, all showed up in Outlook as if they arrived from Exchange.
The calendar also worked perfectly.

Exchange

When you look at Exchange and study its components, you find they number
only four. The first is an information store or message store. The store holds
individual user messages and has an access control list (ACL) engine associated
with them. Similar to RFC-compliant IMAP servers, namespace differs according
to whether the stores belong to individual users or whether the folders are
public. Microsoft uses an Access database for storing message stores. The
limitation of Microsoft's Jet Engine technology and the Access MDB file prevents
vertical scalability.

Secondly, Exchange has a directory. Microsoft structured their Exchange
directory with object classes and attributes. The Exchange directory structure
resembles the RFC-compliant LDAP protocol. However, Microsoft added Object
Classes and changed the attribute names within those and other classes.

Next, Exchange has a mail transfer agent or MTA. Microsoft's MTA appears
similar to the MTA used in an earlier product called Microsoft Mail 3.5. The
Microsoft Mail MTA requires connectors or gateways, which rewrite their
proprietary mail headers to those that comply with foreign systems, such as
Lotus Notes, X-400 and RFC 822 internet mail standards. Unlike sendmail and
similar internet MTAs, Exchange's MTA lacks configuration options.

Finally, Exchange has a component called a system attendant. The attendant
handles every action taken within Exchange, from sending and receiving e-mail
to filling requests for addresses from the Exchange directory. In many ways the
system attendant resembles an attempt to provide interprocess
communication (IPC), which Microsoft's operating systems lack.

Out-Scaling Microsoft Using Berkeley DB

Our Linux server-side solution included similar components to those found in
Exchange. The first is the Cyrus IMAP message store. Cyrus stores hold
individual user messages and have an ACL engine associated with them.
Namespace differs according to whether the stores belong to individual users
or whether the folders are public. Cyrus uses the Berkeley Database from
Sleepycat Software. Where Microsoft's Jet Engine and Access database
technology prevents scaling, Berkeley DB's high performance and scalability
support thousands of simultaneous users working on databases as large as 256
terabytes.

Secondly, Linux has a directory. While Microsoft structured their Exchange
directory to resemble the Lightweight Directory Access Protocol (LDAP), the
Linux solution uses OpenLDAP software, an open-source implementation of
LDAP. To accommodate Outlook clients, we added the Exchange object classes
and their noncompliant attribute names. We indexed the Microsoft-based
distinguished names and created a high-performance global address list.

Like Exchange, the Linux solution has an MTA that can be managed and
configured internally and doesn't need external connectors. The University of
Cambridge developed the Linux MTA we use, called Exim. Exim has numerous
configuration options, including file lookups, local delivery and regular
expression support. In the context of the Linux MTA, users provide regular
expressions to filter content coming in and going out.

Replacing Exchange

In the “Exchange Replacement HOWTO”, Johnson and Mead leave the tasks of
adding server-side messaging and the administrative console to the next
generation of Linux developers. In this article, we explain how one could
transform Exchange transports and message stores. We accomplish this in two
steps. First, we capture Outlook messages and decode their TNEF objects.
Secondly, we use the Exchange client extension architecture to add IMAP
functionality to Outlook in its Corporate Workgroup mode.

These two steps can allow a programmer or a seasoned administrator to create
an alternative service provider for Outlook and serve a number of conventional
mail clients. Linux mail servers do not discriminate based on the platform one

uses. One can use Netscape Mail, Outlook Express, Ximian Evolution, mutt or
Pine, to mention a few of the available MUA.

Highly scalable Linux components, such as Cyrus IMAP, OpenLDAP and Exim,
can replace dozens of Exchange servers on a single Intel platform. The layers of
interfaces and outdated DCE components used by Exchange do not hinder
Linux. With Linux on the zSeries mainframe, we can replace hundreds of
Exchange servers.

If you're looking for a graphical administrative console, projects such as PHP
Cyrus tools, cyrus_imap-sql, Webmin and Replex can make administration of
the server a simple task.

In general, few people would consider replacing Exchange with Linux an easy
task. In spite of that, our development team proved that it could be done.
Hopefully, we have taken much of the mystery and intimidation out of the
Exchange server.

Resources

email: adelste@netscape.net

Tom Adelstein works for Xandros, Inc. and heads up the company's server
division in Dallas, Texas. His current interest lies in the field of web services and
supporting Xandros Linux Desktop. Tom welcomes your comments at
tadelstein@xandros.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6368s1.html
mailto:adelste@netscape.net
mailto:tadelstein@xandros.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Scaling Linux to New Heights: the SGI Altix 3000 System

Steve Neuner

Issue #106, February 2003

With 64 processors and 512GB of memory, SGI claims the title of world's most
powerful Linux system.

SGI recently debuted its new 64-bit, 64-processor, Linux system based on the
Intel Itanium 2 processor—a significant announcement for the company and
for Linux. This system marks the opening of a new frontier as scientists working
on complex and demanding high-performance computing (HPC) problems can
now use and deploy Linux in ways never before possible. HPC environments
continually push the limits of the operating system by requiring larger numbers
of CPUs, higher I/O bandwidth and faster and more efficient parallel
programming support.

Early on in the system's development, SGI made the decision to use Linux
exclusively as the operating system for this new platform. It proved to be a
solid and very capable operating system for the technical compute
environments that SGI targets. With the combination of SGI NUMAflex global
shared-memory architecture, Intel Itanium 2 processors and Linux, we were
breaking records long before the system was introduced.

The new system, called the SGI Altix 3000, has up to 64 processors and 512GB
of memory. A future version will offer up to 512 processors and 4TB. In this
article, we explore the hardware design behind the new SGI system, describe
the software development involved to bring this new system to market and
show how Linux can readily scale and be deployed in the most demanding HPC
environments.

Hardware and System Architecture Background

The SGI Altix 3000 system uses Intel Itanium 2 processors and is based on the
SGI NUMAflex global shared-memory architecture, which is the company's
implementation of a non-uniform memory access (NUMA) architecture.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

NUMAflex was introduced in 1996 and has since been used in the company's
renowned SGI Origin family of servers and supercomputers based on the MIPS
processor and the IRIX 64-bit operating system. The NUMAflex design enables
the CPU, memory, I/O, interconnect, graphics and storage to be packaged into
modular components, or bricks. These bricks can then be combined and
configured with tremendous flexibility to match a customer's resource and
workload requirements better. Leveraging this third-generation design, SGI was
able to build the SGI Altix 3000 system using the same bricks for I/O (IX- and PX-
bricks), storage (D-bricks) and interconnect (router bricks/R-bricks). The primary
difference in this new system is the CPU brick (C-brick), which contains the
Itanium 2 processors. Figure 1 shows the types of bricks used on the SGI Altix
3000 system. Figure 2 depicts how these bricks can be combined into two racks
to make a single-system-image 64-processor system.

Figure 1. NUMAflex Brick Types

Figure 2. Two Possible NUMAflex Configurations

SGI Altix 3000 C-Brick Block Diagram and Specifications

Preparing Linux for a New Hardware Platform

On a well-designed and balanced hardware architecture such as NUMAflex, it is
the operating system's job to ensure that users and applications can fully
exploit the hardware without being hindered due to inefficient resource
management or bottlenecks. Achieving balanced hardware resource
management on a large NUMA system requires starting kernel development
long before the first Itanium 2 processors and hardware prototype systems
arrive. In this case, we also used the first-generation Itanium processors for
making the CPU scaling, I/O performance and other changes to Linux necessary
for demanding HPC environments.

The first step in preparing the software before the prototype hardware arrives
is identifying, as best you can, the necessary low-level hardware register and
machine programming changes the kernel will need for system initialization
and runtime. System manufacturers developing custom ASICs for highly
advanced systems typically use simulation software and tools to test their
hardware design. Before hardware was available, we developed and used
simulators extensively for both the system firmware and kernel development
to get the system-level software ready.

When the original prototype hardware based on first-generation Itanium
processors arrived, it was time for power-on. One of the key milestones was
powering the system on for the first time and taking a processor out of reset,
then fetching and executing the first instructions from PROM.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6440s1.html

Figure 3. SGI engineers celebrate power-on success.

After power-on, the fun really began with long hours and weekends in the
hardware “bring-up” lab. This is where hardware, diagnostic and platform-
software engineers worked together closely to debug the system and get the
processor through a series of important milestones: PROM to boot prompt,
Linux kernel through initialization, reading and mounting root, reaching single-
user mode and then going into multi-user mode and then connecting to the
network. After that, we did the same thing all over again with multiple
processors and multiple nodes—typically pursued in parallel—with several
other bring-up teams at other stations that trail closely behind the lead team's
progress.

Figure 4. During bring-up, a hardware engineer, a PROM engineer and an OS engineer discuss
a bug.

Once we had Linux running on the prototype systems with first-generation
Itanium processors, software engineers could proceed with ensuring that Linux
ran and, in particular, scaled well on large NUMA systems. We built and used
numerous in-house, first-generation Itanium-based systems to help ensure that

Linux performed well on large systems. By early 2001, we had succeeded in
running a 32-processor Itanium-based system—the first of its kind.

Figure 5. The author's son in front of an early 32-processor Itanium-based system, Summer
2001.

These first-generation Itanium-based systems were key in having Linux ready
for demanding HPC requirements. Well before the first Itanium 2 processors
were available from Intel, the bulk of the scaling, I/O performance and other
changes for Linux could be developed and tested.

As one group of SGI software engineers was busy working on performance,
scaling and other issues, using prototypes with first-generation Itanium
processors, another team of hardware and platform-software engineers was
getting the next-generation SGI C-brick with Itanium 2 processors ready for
power-on to repeat the bring-up process all over again.

Figure 6. First power-on of the Itanium 2-based C-brick.

By mid-2002, the bring-up team had made excellent progress, from power-on
of a single processor to running a 64-processor system. The 64-processor
system with Itanium 2 processors again marked the first of its kind. All this, of
course, was with Linux running in a single-system image.

Throughout this whole process, we passed any changes in Linux or bugs found
back to the kernel developers for inclusion in a future release of Linux.

A Closer Look at Linux on Big Iron

Other Linux developers often ask, “What kind of changes did you have to make
to get Linux to run on that size system?” or “Isn't Linux CPU scaling limited to
eight or so processors?” Answering these questions involves examining further
what SGI is using as its software base, the excellent changes made by the
community and the other HPC-related enhancements and tools provided by
SGI to help make Linux scale far beyond the perceived limit of eight processors.

On the SGI Altix 3000 system, the system software consists of a standard Linux
distribution for Itanium processors and SGI ProPack, an overlay product that
provides additional features for Linux. SGI ProPack includes a newer 2.4-based
Linux kernel, HPC libraries highly tuned to exploit SGI's hardware, NUMA tools
and drivers.

The 2.4-based Linux kernel used on the SGI Altix 3000 system consists of the
standard 2.4.19 kernel for Itanium processors (kernel.org), plus other
improvements. These improvements fall into one of three categories: general
bug fixes and platform support, improvements from other work occurring
within the Linux community and SGI changes.

The first category of kernel changes is simply ongoing fixes to bugs found
during testing and the continued improvements for the underlying platform
and NUMA support. For these changes, SGI works with the kernel team's
designated maintainer to get these changes incorporated back into the
mainline kernel.

The second category of kernel improvements consists of the excellent work and
performance patches developed by others within the community that have not
been accepted officially yet or were deferred until the 2.5 development stream.
These improvements can be found on the following VA Software SourceForge
sites: “Linux on Large Systems Foundry” (large.foundries.sourceforge.net) and
the “Linux Scalability Effort Project” (sourceforge.net/projects/lse). We used the
following patches from these projects: CPU scheduler, Big Kernel Lock usage
reduction improvements, dcache_lock-usage reduction improvements based
on the Read-Copy-Update spinlock paradigm and xtime_lock (gettimeofday)
usage reduction improvements based on the FRlock locking paradigm.

http://kernel.org
http://large.foundries.sourceforge.net
http://sourceforge.net/projects/lse

We also configured and used the Linux device filesystem (devfs,
www.atnf.csiro.au/people/rgooch/linux/docs/devfs.html) on our systems to
handle large numbers of disks and I/O busses. Devfs ensures that device path
names persist across reboots after other disks or controllers are added or
removed. The last thing a system administrator of a very large system wants is
to have a controller go bad and have some 50 or more disks suddenly
renumbered and renamed. We have found devfs to be reliable and stable in
high-stress system environments with configurations consisting of up to 64
processors with dozens of fibre channel loops with hundreds of disks attached.
Devfs is an optional part of the 2.4 Linux kernel, so a separate kernel patch was
not needed.

The third category of kernel change consists of improvements by SGI that are
still in the process of getting submitted into mainline Linux, were accepted after
2.4 or will probably remain separate due to the specialized use or nature of the
patch. These open-source improvements can be found at the “Open Source at
SGI” web site (oss.sgi.com). The improvements we made included: XFS
filesystem software, Process AGGregates (PAGG), CpuMemSets (CMS), kernel
debugger (kdb) and a Linux kernel crash dump (lkcd).

In addition, SGI included its SCSI subsystem and drivers ported from IRIX. Early
tests of the Linux 2.4 SCSI I/O subsystem showed that our customers'
demanding storage needs could not be met without a major overhaul in this
area. While mainstream kernel developers are working on this for a future
release, SGI needed an immediate fix for its 2.4-based kernel, so the SGI XSCSI
infrastructure and drivers from IRIX were used as an interim solution.

Figures 7-9 illustrate some of the early performance improvements that were
achieved with Linux on the SGI Altix 3000 system using the previously described
changes. Figure 7 compares XFS to other Linux filesystems. (Note, for a more
detailed study on Linux filesystem performance, see “Filesystem Performance
and Scalability in Linux 2.4.17”, 2002 USENIX Annual Technical Conference,
which is also available at oss.sgi.com). Figure 8 compares XSCSI to SCSI in Linux
2.4, and Figure 9 shows CPU scalability using AIM7.

http://www.atnf.csiro.au/people/rgooch/linux/docs/devfs.html
http://oss.sgi.com
http://oss.sgi.com

Figure 7. Filesystem performance comparison: AIM7 multi-user kernel workload, 2.4.17
kernel; 28 P Itanium prototype, 14GB, 120 disks; work-in-progress, interim example; varied
filesystems only, but includes SGI enhancements and SGI tuned kernel.

Figure 8. Linux XSCSI performance example: work-in-progress, interim example using 2.4.16
kernel; 120 processes reading from 120 disks (through driver only).

Figure 9. CPU scaling example with AIM7: AIM7 multi-user kernel workload, 2.4.16 kernel;
work-in-progress, interim example; SGI enhancements and SGI-tuned kernel.

While SGI is focused more toward high-performance and technical computing
environments—where the majority of CPU cycles is typically spent in user-level
code and applications instead of in the kernel—the AIM7 benchmark does
show that Linux can still scale well with other types of workloads common in
enterprise environments. For HPC application performance and scaling
examples for Linux, see the Sidebar “Already Solving Real-World Problems”.

Figure 10 shows the scaling results achieved on an early SGI 64-processor
prototype system with Itanium 2 processors running the STREAM Triad
benchmark, which tests memory bandwidth. With this benchmark, SGI
demonstrated near-linear scalability from two to 64 processors and achieved
over 120GB per second. This result marks a significant milestone for the
industry by setting a new world record among a microprocessor-based system,
which was achieved running Linux within a single-system image! This
impressive result also demonstrates that Linux can indeed scale well beyond
the perceived limitation of eight processors. For more information on STREAM
Triad, see www.cs.virginia.edu/stream.

http://www.cs.virginia.edu/stream
https://secure2.linuxjournal.com/ljarchive/LJ/106/6440f10.large.jpg

Figure 10. Near-linear STREAM Triad scalability up to 64 processors.

When you look at the list of kernel additions included in SGI ProPack the list is
actually surprisingly small, which speaks highly of Linux's robust original design.
What is even more impressive is that many of these and other changes are
already in the 2.5 development kernel. At this pace, Linux is quickly evolving as
a serious HPC operating system.

Already Solving Real-World Problems

Other Enhancements to Linux for HPC

SGI ProPack also includes several tools and libraries to help improve
performance on large NUMA systems for solving a complex problem with an
application that needs large numbers of CPUs and memory, or when multiple
applications are running simultaneously within the same large system. On
Linux, SGI provides the commands cpuset and dplace, which give predictable
and improved CPU and memory placement control for HPC applications. These
tools help unrelated jobs carve out and use the resources they each need
without getting into each other's way or help prevent a smaller job from
inadvertently thrashing across a larger pool of resources than it can effectively
use. Therefore system resources are used efficiently and deliver results in a
consistent time period—two characteristics critical to HPC environments.

Also, the SGI Message Passing Toolkit (MPT) in SGI ProPack provides industry-
standard message passing libraries optimized for SGI computers. MPT contains
MPI and SHMEM APIs, which transparently utilize and exploit the low-level
capabilities within the SGI hardware, such as its block transfer engine (BTE) for

https://secure2.linuxjournal.com/ljarchive/LJ/106/6440f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6440f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6440s2.html

fast memory-to-memory transfers and the hardware memory controller's fetch
operation (fetchop) support. Fetchop support enables direct communication
and synchronization between multiple MPI processes while eliminating the
overhead associated with system calls to the operating system.

The SGI ProPack NUMA tools, HPC libraries and additional software support
layered on top of a standard Linux distribution provide a powerful HPC
software environment for big compute and data-intensive workloads. Much like
a custom ASIC on hardware providing the “glue logic” to leverage and use
commodity processors, memory and I/O parts, SGI ProPack software provides
the “glue logic” to leverage the Linux operating system as a commodity building
block for large HPC environments.

Conclusion

No one believed Linux could scale so well, so soon. By combining Linux with SGI
NUMAflex system architecture and Itanium 2 processors, SGI has built the
world's most powerful Linux system. Bringing the SGI Altix 3000 system to
market involved a tremendous amount of work, and we consider it to be only
the beginning. The aggressive standards-based strategy that SGI has for using
Linux on Itanium 2-based systems is raising the bar on what Linux can do while
providing customers an exciting, no-compromises alternative for large HPC
servers and supercomputers. SGI engineers—and the entire company for that
matter—are fully committed to building on Linux capabilities and pushing the
envelope even further to bring more exciting breakthroughs and opportunities
for the Linux and HPC communities.

Steve Neuner has been working in UNIX kernel development for the past 19
years at major computer manufacturers including MAI Basic Four, Sequent
Computer Systems, Digital Equipment Corporation and SGI. Now with SGI,
Steve is the Linux engineering director and has been working on Linux and
Itanium-based systems since joining SGI four years ago.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Inside the Intel Compiler

Dale Schouten

Xinmin Tian

Aart Bik

Milind Girkar

Issue #106, February 2003

How did Intel's compiler beat gcc on Benchmarks? Intel's compiler developers
explain IA-32 optimizations they use.

The increasing acceptance of Linux among developers and researchers has yet
to be matched by a similar increase in the number of available development
tools. The recently released Intel C++ and Fortran compilers for Linux aim to
bridge this gap by providing application developers with highly optimizable
compilers for the Intel IA-32 and Itanium processor families. These compilers
provide strict ANSI support, as well as optional support for some popular
extensions. This article focuses on the optimizations and features of the
compiler for the Intel IA-32 processors. Throughout the rest of this article, we
refer to the Intel C++ and Fortran compilers for Linux on IA-32 collectively as
“the Intel compiler”.

The Intel compiler optimizes a program at all levels, from high-level loop and
interprocedural optimizations to standard compiler data flow optimizations, in
addition to efficient low-level optimizations, such as instruction scheduling,
basic block layout and register allocation. In this article, we mainly focus on
compiler optimizations unique to the Intel compiler. For completeness,
however, we also include a brief overview of some of the more traditional
optimizations supported by the Intel compiler.

Traditional Compiler Optimizations

Decreasing the number of instructions that are dynamically executed and
replacing instructions with faster equivalents are perhaps the two most obvious

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ways to improve performance. Many traditional compiler optimizations fall into
this category: copy and constant propagation, redundant expression
elimination, dead code elimination, peephole optimizations, function inlining,
tail recursion elimination and so forth.

The Intel compiler provides a rich variety of both types of optimizations. Many
local optimizations are based on the static-single-assignment (SSA) form.
Redundant (or partially redundant) expressions, for example, are eliminated
according to Chow's algorithm (see Resource 6), where an expression is
considered redundant if it is unnecessarily calculated more than once on an
execution path. For instance, in the statement:

x[i] += a[i+j*n] + b[i+j*n];

the expression i+j*n is redundant and needs to be calculated only once. Partial
redundancy occurs when an expression is redundant on some paths but not
necessarily all paths. In the code:

if (c) {
 x = y+a*b;
} else {
 x = a;
}
z = a*b;

the expression a*b is partially redundant. If the else branch is taken, a*b is only
calculated once; but if the then branch is taken, it is calculated twice. The code
can be modified as follows:

t = a*b;
if (c) {
 x = y+t;
} else {
 x = a;
}
z = t;

so there is only one calculation of a*b, no matter which path is taken.

Clearly, this transformation must be used judiciously as the increase in
temporary values, ideally stored in registers, can increase lifetimes and, hence,
register pressure. An algorithm similar to Chow's algorithm (see Resource 9) is
used to eliminate dead stores, in which a store is succeeded by another store to
the same location before a fetch, and partially dead stores, which are dead
along some but not necessarily all paths. Other optimizations based on the SSA
form are constant propagation (see Resource 7) and the propagation of
conditions. Consider the following example:

if (x>0) {
 if (y>0) {
 . . .
 if (x == 0) {
 . . .
 }

 }
}

Since x>0 holds within the outmost if, unless x is changed, we know that x != 0,
and therefore the code within the inner if is dead. Although this and the
previous example may seem contrived, such situations are actually quite
common in the presence of address calculations, macros or inlined functions.

Powerful memory disambiguation (see Resource 8) is used by the Intel compiler
to determine whether memory references might overlap. This analysis is
important to enhance, for instance, register allocation and to enable the
detection and exploitation of implicit parallelism in the code, as discussed in
the following sections. The Intel compiler also provides extensive
interprocedural optimizations, including manual and automatic function
inlining, partial inlining where only the hot parts of a routine are inlined,
interprocedural constant optimizations and exception-handling optimizations.
With the optional “whole program” analysis, the data layout of certain data
structures, such as COMMON BLOCKS in Fortran, may be modified to enhance
memory accesses on various processors. For example, the data layout could be
padded to provide better data alignment. In addition, in order to make
decisions that are more intelligent about when and where to inline, the Intel
compiler relies on two types of profiling information: static profiling and
dynamic profiling. Static profiling refers to information that can be deduced or
estimated at compile time. Dynamic profiling is information gathered from
actual executions of a program. These two types of profiling are discussed in
the next section.

Profiling Optimizations

First, we will look at static profiling. Consider the following code fragment:

g();
for (i=0; i<10; i++) {
 g();
}

Obviously, the call inside the loop executes ten times more often than the call
outside the loop. In many cases, however, there is no way to make a good
estimate. In the following code:

for (i=0; i<10; i++) {
 if (condition) {
 g();
 } else {
 h();
 }
}

it is difficult to say whether one condition is more likely to occur than another.
If h() happened to be an exit or some other routine that was known not to

return, it would be safe to assume the then branch was more likely taken and
inlining g() may be worthwhile. Without such information, however, the decision
of whether to inline one call or the other (or both) gets more complicated.
Another option is to use dynamic profiling.

Dynamic profiling gathers information from actual executions of a program.
This allows the compiler to take advantage of the way a program actually runs
in order to optimize it. In a three-step process, the application is first built with
profiling instrumentation embedded in it. Then the resulting application is run
with a representative sample (or samples) of data, which yields a database for
the compiler to use in a subsequent build of the application. Finally, the
information in this database is used to guide optimizations such as code
placement or grouping frequently executed basic blocks together, function or
partial inlining and register allocation. Register allocation in the Intel compiler is
based on graph fusion (see Resource 5), which breaks the code into regions.
These regions are typically loop bodies or other cohesive units. With profile
information, the regions can be selected more effectively and are based on the
actual frequency of the blocks instead of syntactic guesses. This allows spills to
be pushed into less frequently executed parts of the program.

Intra-Register Vectorization

Exploiting parallelism is an important way to increase application performance
in modern architectures. The Intel compiler can be key in the effort to exploit
potential parallelism in a program by facilitating such optimizations as
automatic vectorization, automatic parallelization and support for OpenMP
directives. Let's look at the automatic conversion of serial loops into a form that
takes advantage of the instructions provided by the Intel MMX technology or
SSE/SSE2 (Streaming-SIMD-extensions), a process we refer to as “intra-register
vectorization” (see Resource 1). For example, given the function:

void vecadd(float a[], float b[], float c[], int n)
{
 int i;
 for (i = 0; i < n; i++) {
 c[i] = a[i] + b[i];
 }
}

the Intel compiler will transform the loop to allow four single-precision floating-
point additions to occur simultaneously using the addps instruction. Simply put,
using a pseudo-vector notation, the result would look something like this:

for (i = 0; i < n; i+=4) {
 c[i:i+3] = a[i:i+3] + b[i:i+3];
}

A scalar cleanup loop would follow to execute the remainder of the instructions
if the trip count n is not exactly divisible by four. Several steps are involved in

this process. First, because it is possible that no information exists about the
base addresses of the arrays, runtime code must be inserted to ensure that the
arrays do not overlap (dynamic dependence testing) and that the bulk of the
loop runs with each vector iteration having addresses aligned along 16-byte
boundaries (dynamic loop peeling for alignment). In order to vectorize
efficiently, only loops of sufficient size are vectorized. If the number of
iterations is too small, a simple serial loop is used instead. Besides simple
loops, the vectorizer also supports loops with reductions (such as summing an
array of numbers or searching for the max or min in an array, conditional
constructs, saturation arithmetic and other idioms. Even the vectorization of
loops with trigonometric mathematical functions is supported by means of a
vector math library.

To give a taste of a realistic performance improvement that can be obtained by
intra-register vectorization, we report some performance numbers for the
double-precision version of the Linpack benchmark (available in both Fortran
and C at www.netlib.org/benchmark). This benchmark reports the performance
of a linear equation solver that uses the routines DGEFA and DGESL for the
factorization and solve phase, respectively. Most of the runtime of this
benchmark results from repetitively calling the Level 1 BLAS routine DAXPY for
different subcolumns of the coefficient matrix during factorization. Under
generic optimizations (switch -O2), this benchmark reports 1,049 MFLOPS for
solving a 100×100 system on a 2.66GHz Pentium 4 processor. When intra-
register vectorization for the Pentium 4 processor is enabled (switch -xW), the
performance goes up to 1,292 MFLOPS, boosting the performance by about
20%.

OpenMP and Auto-Parallelization

The OpenMP standard for C/C++ and Fortran (www.openmp.org) has recently
emerged as the de facto standard for shared-memory parallel programming. It
allows the user to specify parallelism without getting involved in the details of
iteration partitioning, data sharing, thread scheduling and synchronization.
Based on these directives, the Intel compiler will transform the code to
generate multithreaded code automatically. The Intel compiler supports the
OpenMP C++ 2.0 and OpenMP Fortran 2.0 standard directives for explicit
parallelization. Applications can use these directives to increase performance
on multiprocessor systems by exploiting both task and data parallelism.

The following is an example program, illustrating the use of OpenMP directives
with the Intel C++ Linux OpenMP compiler:

#define N 10000
void ploop(void)
{
 int k, x[N], y[N], z[N];
 #pragma omp parallel for private(k) shared(x,y,z)

http://www.netlib.org/benchmark
http://www.openmp.org

 for (k=0; k<N; k++) {
 x[k] = x[k] * y[k] + workunit(z[k]);
 }
}

The for loop will be executed in parallel by a team of threads that divide the
iterations in the loop body amongst themselves. Variable k is marked private—
each thread will have its own copy of k—while the arrays x, y and z are shared
among the threads.

The resulting multithreaded code is illustrated below. The Intel compiler
generates OpenMP runtime library calls for thread creation and management,
as well as synchronization (see Resources 1 and 2):

#define N 10000
void ploop(void)
{
 int k, x[N], y[N], z[N];
 __kmpc_fork_call(loc,
 3,
 T-entry(_ploop_par_loop),
 x, y, z)
 goto L1:
 T-entry _ploop_par_loop(loc, tid,
 x[], y[], z[]) {
 lower_k = 0;
 upper_k = N;
 __kmpc_for_static_init(loc, tid, STATIC,
 &lower_k,
 &upper_k, ...);
 for (local_k=lower_k; local_k<=upper_k;
 local_k++) {
 x[local_k] = x[local_k] * y[local_k]
 + workunit(z[local_k]);
 }
 __kmpc_for_static_fini(loc, tid);
 T-return;
 }
L1: return;
}

The multithreaded code generator inserts the thread invocation call
__kmpc_fork_call with the T-entry point and data environment (for example,
thread id tid) for each loop. This call into the Intel OpenMP runtime library forks
a number of threads that execute the iterations of the loop in parallel.

The serial loops annotated with the OpenMP directive are converted to
multithreaded code by localizing the lower- and upper-loop bounds and by
privatizing the iteration variable. Finally, multithreading runtime initialization
and synchronization code is generated for each T-region defined by a [T-entry,
T-ret] pair. The call __kmpc_for_static_init computes the localized loop lower-
bound, upper-bound and stride for each thread according to a scheduling
policy. In this example, the generated code uses static scheduling. The library
call __kmpc_for_static_fini informs the runtime system that the current thread
has completed one loop chunk.

Rather than performing source-to-source transformations, as is done in other
compilers such as OpenMP NanosCompiler and OdinMP, the Intel compiler
performs these transformations internally. This allows tight integration of the
OpenMP implementation with other advanced, high-level compiler
optimizations for improved uniprocessor performance such as vectorization
and loop transformations.

Besides the compiler support for exploiting the OpenMP directive-guided
explicit parallelism, users also can try auto-parallelization by using the option -
parallel. Under this option, the compiler automatically analyzes the loops in the
program to detect those that have no loop-carried dependency and can be
executed in parallel profitably. The auto-parallelization phase in the compiler
relies on the advanced memory disambiguation techniques for its analysis, as
well as the profiling information for its heuristics in deciding when to
parallelize.

CPU-Dispatch

One of the unique features of the Intel compiler is CPU-Dispatch, which allows
the user to target a single object for multiple IA-32 architectures by means of
either manual CPU-Dispatch or Auto-CPU-Dispatch. Manual CPU-Dispatch
allows the user to write multiple versions of a single function. Each function
either is assigned a specific IA-32 architecture platform or is considered generic,
meaning it can run on any IA-32 architecture. The Intel compiler generates code
that dynamically determines on which architecture the code is running and
accordingly chooses the particular version of the function that will actually
execute. This runtime determination allows programmers to take advantage of
architecture-specific optimizations, such as SSE and SSE2, without sacrificing
flexibility, allowing execution of the same binary on architectures that do not
support newer instructions.

Auto-CPU_Dispatch is similar but with the added benefit that the compiler
automatically generates multiple versions of a given function. During
compilation, the compiler decides which routines will gain from architecture-
specific optimizations. These routines are then automatically duplicated to
produce architecture-specific optimized versions, as well as generic versions.
The benefit of this feature is, it does not require any rewrite by the
programmer. A normal source file can take advantage of the Auto-CPU-
Dispatch feature by the simple use of a command-line option. For example,
given the function:

void init(float b[], double c[], int n)
{
 int i;
 for (i = 0; i < n; i++) {
 b[i] = (float)i;
 }

 for (i = 0; i < n; i++) {
 c[i] = (double)i;
 }
}

the Intel compiler can produce up to three versions of the function. A generic
version of the function is generated that will run on any IA-32 processor.
Another version would be tuned for the Pentium III processor by vectorizing the
first loop with SSE instructions. A third version would be optimized for the
Pentium 4 processor by vectorizing both loops to take advantage of SSE2
instructions.

The resulting function begins with dispatch code like this:

.L1 testl $-512, __intel_cpu_indicator
 jne init.J
 testl $-128, __intel_cpu_indicator
 jne init.H
 testl $-1, __intel_cpu_indicator
 jne init.A
 call __intel_cpu_indicator_init
 jmp .L1

Where init.A, init.H and init.J are the generic, SSE and SSE2 optimized versions,
respectively.

Language Extensions

While the Intel compiler is strictly ANSI-compliant, there are options to cover
many GCC extensions, such as long long int, zero-length arrays or macros with
variable number of arguments. GCC-style inline assembly code is also
supported. DWARF2 debugging information is provided to use with standard
debuggers such as GDB. Certain Microsoft extensions are also enabled, such as
__declspec attributes, along with support for Microsoft-style inline assembly
code.

In addition to inline assembly code, the Intel compiler also supports MMX and
SSE/SSE2 intrinsics. These allow access to the processor-specific extensions
without the performance and correctness problems often caused by using
inline assembly that can interfere with the analysis and transformations of the
Intel compiler. By using the provided intrinsics, the programmer can take
advantage of specific instructions but still receive the benefits of register
allocation, scheduling and other optimizations.

Conclusions

The Intel compiler for Linux is a state-of-the-art compiler that delivers
performance among the best in the industry, using sophisticated techniques to
enable advanced features of Intel IA-32 architectures. More information can be
found at developer.intel.com/software/products/compilers.

http://developer.intel.com/software/products/compilers

Acknowledgements

Thanks to Zia Ansari and David Kreitzer for their help in describing some of the
technical details of the compiler. We also thank all the other members of the
Intel compiler team.

Intel, Pentium, Itanium and MMX are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other countries.

Resources

Dale Schouten (Dale.A.Schouten@intel.com) works at the Intel Compiler Lab. He
has a PhD from the University of Illinois. In his other life, Dale is an
unprofessional musician and the father of two exceptional children.

Xinmin Tian (Xinmin.Tian@intel.com) works at the Intel Compiler Lab at Intel
Corp. He manages the OpenMP Parallelization group. He holds BSc, MSc and
PhD degrees in Computer Science from Tsinghua University.

Aart Bik (Aart.Bik@intel.com) received his MSc degree in Computer Science
from Utrecht University, The Netherlands, and his PhD degree from Leiden
University, The Netherlands. He is currently working on vectorization and
parallelization at the Intel Compiler Lab.

https://secure2.linuxjournal.com/ljarchive/LJ/106/4885s1.html
mailto:Dale.A.Schouten@intel.com
mailto:Xinmin.Tian@intel.com
mailto:Aart.Bik@intel.com

Milind Girkar (Milind.Girkar@intel.com) received a PhD degree in Computer
Science from the University of Illinois at Urbana-Champaign. Currently, he
manages the IA-32 Compiler Development group at the Intel Compiler Lab.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:Milind.Girkar@intel.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Large-Scale Mail with Postfix, OpenLDAP and Courier

Dave Dribin

Keith Garner

Issue #106, February 2003

Setting up an SMTP mail server for multiple domains on a single machine with
remote access via IMAP.

Although this article provides instructions on setting up an integrated mail
server using Postfix, OpenLDAP and Courier-IMAP, it does not discuss how
these software components were chosen, which could be a whole article in and
of itself. The goal is to set up an SMTP mail server for multiple domains on a
single machine with remote access via IMAP. Also, instead of having mail
delivered only to people with shell accounts, we want to have IMAP accounts
that do not have a corresponding shell account. This gives rise to two classes of
accounts: local and virtual. Local accounts are those with shell access. They use
their shell user name and password to access IMAP. Virtual accounts have a
user name and password that only works for logging in to IMAP. The terms
local and virtual are used throughout the rest of the article.

The Big Picture

Figure 1 shows how Postfix, Courier, Procmail and OpenLDAP interact. Local
account information is stored in /etc/password, and authentication is handled
by pluggable authentication modules (PAM). Virtual account information is
stored in an LDAP directory. LDAP provides both account lookup and
authentication capabilities. It is possible to avoid an LDAP directory, but it will
be more difficult to administer the virtual account information. For example,
Postfix and Courier both support virtual accounts using configuration files, but
they have different file formats.

Postfix accepts incoming mail from SMTP. It will reject any mail for unknown
accounts, both local and virtual. It delivers the mail itself for virtual accounts

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

and uses Procmail as the MDA for local accounts. Courier provides remote
access to the mailboxes via the IMAP and POP protocols.

Figure 1. Overall Design

Mailbox Location

A local account's mail is stored in its home directory at ${HOME}/Maildir/ in the
Maildir format. It is standard practice for Maildir delivery to go into the
account's home directory rather than /var/spool/mail. Both Postfix and Courier
work out of the box with this standard behavior.

Unlike local accounts, there is no standard location for virtual accounts' e-mail.
We created a single UNIX account, called vmail, that holds the mail for all the
virtual accounts. Each virtual domain has a subdirectory within the ~vmail/
domains/ directory. For example, if there is an account <john@example.com>,
mail would be stored in ~vmail/domains/example.com/john/ in maildir format.
You can also spread virtual accounts across multiple UNIX accounts, for
example, by creating a UNIX account for each virtual domain.

LDAP Directory Design

There are many possibilities when designing your directory, and not all aspects
of this topic are covered here. One useful reference is the iPlanet Deployment
Guide (see Resources). This article assumes you are familiar with LDAP
concepts and terminology. You should take the time up front to design a tree
that matches your specific requirements.

Tree Structure

Figure 2 shows a sample directory tree for a web hosting company. The
company's domain name, myhosting.example, was chosen as the root suffix.

Postfix and Courier both search the o=hosting,dc=myhosting,dc=example
subtree for e-mail information. The o=accounts,dc=myhosting,dc=example
subtree shows how you could integrate shell account information for PAM into
the same directory, but this is not necessary for setting up e-mail. Each hosted
domain gets its own organization beneath the hosting organization. Each e-mail
account goes under the domain's subtree. Thus, the distinguished name for the
<user2@domain2.example> e-mail address is:

mail=<user2@domain2.example>,o=domain2.example,
 o=hosting,dc=myhosting,dc=example

This is a fairly stable design as accounts will never transfer between domains.
The end result is good LDAP design, because moving subtrees can be
troublesome in LDAP. The design is also quite flexible because each domain's
tree can be tailored, if necessary. Each domain must have a postmaster entry
that provides dual functionality. Its primary function is for access control, but it
also acts as a forwarding e-mail address. Each domain also must have an abuse
alias that forwards mail to the system administrator.

Figure 2. A Sample Directory Tree for a Web-Hosting Company

Choosing a Schema

The schema defines which attributes an entry can have by defining object
classes. None of the default schemas that come with OpenLDAP are really
suited for entries used exclusively for e-mail mailboxes or forwarding. We are
using the schema that Courier provides in its distribution. Another possible
schema to look at is the schema distributed with the qmail-LDAP Project. You
also can design your own schema, but be aware that you should use OIDs
registered with the Internet Assigned Numbers Authority (IANA).

https://secure2.linuxjournal.com/ljarchive/LJ/106/5917f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/5917f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/5917f2.large.jpg

Courier Schema

The courierMailAccount object class, summarized in Table 1, is used for virtual
e-mail accounts. The courierMailAlias object class, summarized in Table 2, is
used for e-mail addresses that forward to another address.

Table 1. courierMailAccount

Table 2. courierMailAlias

The courierMailAccount object class does not exactly fit our needs. We do not
need uidNumber and gidNumber because all mail goes to the vmail account.
However, we must put in dummy values as the schema requires them. Note
that these values would be meaningful if we were spreading virtual accounts
over many UNIX accounts. We require the mailbox attribute, because it is
needed to determine the location of the mailbox on the filesystem. The mailbox
must end in a slash to indicate that it's a Maildir-style mailbox. The
userPassword attribute also is required because all e-mail accounts must have
a password in order to be accessed via IMAP or POP. We do not use the other
optional attributes.

The courierMailAlias object class is a good fit for our needs. We use only the
two required attributes and do not use either of the optional attributes. The
maildrop attribute can be another e-mail address or a local account on this
machine.

Access Control

OpenLDAP provides many possibilities for access control. By default, the root
account has read and write access to all entries in the tree. We would like to
delegate some of this administration to individual accounts in each hosted
domain so they can do minor changes on their own without access to the root
account. This is done by making the postmaster entry an organizationalRole
with a roleOccupant attribute for each entry with administration privileges.
OpenLDAP can then be configured to allow access only to members of this
group.

Implementation

This section describes how to implement a virtual mail solution. Not every little
detail is covered, only what is needed above and beyond the standard
installations.

https://secure2.linuxjournal.com/ljarchive/LJ/106/5917t1.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/5917t2.html

Following is the list of software, with version numbers, with which we tested
this configuration:

• Red Hat Linux 6.2, 7.1, or 7.2
• Postfix 1.1.x
• OpenLDAP 2.0.21
• Courier-IMAP 1.4.1
• Procmail 3.22

You need to create the vmail account, and then create the ~/vmail/domains/
directory. You also need to create an account and two groups for Postfix as
covered in Postfix's INSTALL documentation.

You do not need to follow any special instructions for compiling and installing
OpenLDAP, so consult its documentation for instructions. For a production
environment, read up on running OpenLDAP as a non-root account, setting up
a chroot environment and replication. This article describes how to configure
slapd for a single server, create the base tree structure and insert some basic
data into the LDAP directory. Figure 2 shows the LDAP tree we set up here.

Configuring slapd

You need to make Courier's schema file available, so copy the file from authlib/
authldap.schema in the Courier distribution to /usr/local/etc/openldap/
schema/courier.schema. Courier's schema depends on cosine.schema and
nis.schema. Add these lines to slapd.conf:

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/nis.schema
include /usr/local/etc/openldap/schema/courier.schema

Next, set up a database definition with the following lines in slapd.conf:

database ldbm
directory /usr/local/var/openldap-ldbm
suffix "dc=myhosting,dc=example"

The database directive specifies the back-end type to use (use LDBM as the
back-end database). The directory directive specifies the path to the LDBM
database. Make sure the directory specified exists prior to starting slapd and
that slapd has read and write permissions on the directory. The suffix directive
specifies the root suffix for this database. The next few lines set up the
superuser or root account:

rootdn "cn=Manager,dc=myhosting,dc=example"
rootpw {SSHA}ra0sD47QP32ASAlaAhF8kgi+8Aflbgr7

The rootdn entry has complete access to the database, which is why the
password is stored outside the actual database. The password in rootpw
should always be stored in hashed format. Do not store the password in clear
text. To convert the clear text password secret to a hashed format, use the
slappasswd command:

% slappasswd
New password: secret
Re-enter new password: secret
{SSHA}ra0sD47QP32ASAlaAhF8kgi+8Aflbgr7

Take the output from slappasswd, and copy that into slapd.conf, as we did
above.

To speed up searches, you should create indexes for commonly searched
attributes:

index objectClass pres,eq
index mail,cn eq,sub

The last part in slapd.conf is the access control. The OpenLDAP FAQ contains
good information on how you would set up postmaster as a group ACL.

Creating the Directory Tree

Now that slapd is configured, it's time to start adding data to the LDAP
directory. We use the command-line tools that come with OpenLDAP and
create LDIF files to modify the directory.

The first step is to create a base tree structure with our root node, the hosting
organization and an entry for the rootdn. Create a file called base.ldif with the
following contents:

dn: dc=myhosting, dc=example
 objectClass: top
 dn: cn=Manager, dc=myhosting, dc=example
 objectClass: top
 objectClass: organizationalRole
 cn: Manager
 dn: o=hosting, dc=myhosting, dc=example
 objectClass: top
 objectClass: organization
 o: hosting

Now use ldapadd, binding as the root account, to add this LDIF:

ldapadd -x -D "cn=Manager,dc=myhosting,dc=example" \
-w secret -f base.ldif

Adding a Domain

Domains can now be added under the hosting tree. Each domain needs to have
postmaster and abuse entries at minimum. To make a tree for

domain1.example, create a file called domain1.example.ldif with the following
contents:

dn: o=domain1.example, o=hosting, dc=myhosting,
 dc=example
objectClass: top
objectClass: organization
o: domain1.example
dn: cn=postmaster, o=domain1.example, o=hosting,
 dc=myhosting, dc=example
objectClass: top
objectClass: organizationalRole
objectClass: CourierMailAlias
cn: postmaster
mail:
maildrop: postmaster
dn: mail=abuse@domain1.example, o=domain1.example,
 o=hosting, dc=myhosting, dc=example
objectClass: top
objectClass: CourierMailAlias
mail:
maildrop: abuse

Notice that the maildrop attributes are local e-mail accounts and will forward to
the postmaster and abuse accounts in /etc/aliases. There are no accounts in
the postmaster role, so only the root account can create accounts at the
moment. Add this domain with the following command:

ldapadd -x -D "cn=Manager,dc=myhosting,dc=example"
\
-w secret -f domain1.example.ldif

Adding an Account

Now, let's add an account with an e-mail <user1@domain1.example>. Let's also
grant this account postmaster privileges for domain1.example. Create a
user1.domain1.example.ldif with the following contents:

dn: mail=user1@domain1.example, o=domain1.example,
 o=hosting, dc=myhosting, dc=example
objectClass: top
objectClass: CourierMailAccount
mail:
homeDirectory: /home/vmail/domains
uidNumber: 101
gidNumber: 101
mailbox: domain1.example/user1
dn: cn=postmaster, o=domain1.example, o=hosting,
dc=myhosting, dc=example
changetype: modify
add: roleOccupant
roleOccupant: mail=user1@domain1.example,
 o=domain1.example, o=hosting,
 dc=myhosting, dc=example

The first section adds a new entry for the account. The home directory and
mailbox point to the physical mailbox on the filesystem. The uidNumber and
gidNumber attributes are required but not used, so they are filled in with
dummy values of 101. The second section modifies the postmaster entry by
adding a roleOccupant attribute with the DN of user1@domain1.example. Let's
create this account:

ldapadd -x -D "cn=Manager,dc=myhosting,dc=example"
\
-w secret -f user1.domain1.example.ldif

The account does not have a password yet, so even though it has been granted
postmaster privileges, it cannot be authenticated. Use the ldappasswd
command to set the initial password to user1:

ldappasswd -x -D "$DN" -w $PW -s user1 \
"mail=user1@domain1.example, o=domain1.example,
o=hosting, dc=myhosting, dc=example"

Other domains and accounts can be added with similar LDIF files. Creating LDIF
files by hand can be cumbersome and error-prone. We discuss alternatives for
administration later.

Postfix

We cover only the sections of Postfix that pertain to the mail hosting. To deal
with other parts of Postfix setup, please visit the Postfix web page.

Download the Postfix source and untar it. You need to rebuild the Postfix
Makefiles to be aware of LDAP and link against it. To do this, execute the
following command:

make makefiles CCARGS="-I/usr/local/include
-DHAS_LDAP" AUXLIBS="-L/usr/local/lib -lldap
-L/usr/local/lib -llber"

At this point, follow the normal Postfix compiling and installing instructions as
documented in its INSTALL and LDAP_README files.

Configuring Postfix

While configuring Postfix for this task, we are mostly concerned with /etc/
postfix/main.cf. For most of the Postfix configuration, you will configure in a
way that makes the most sense for your site, and you can follow the
documentation contained in the Postfix source or on the Postfix web site. Here,
we talk about the settings that are affected by this setup. If any of the
configuration examples shown below aren't explicitly attributed to a specific
file, assume they can be found in main.cf.

The transport table maps domains to message delivery transports (as specified
in /etc/postfix/master.cf) and/or relay hosts. For our virtual domains, we want
to map them to the virtual delivery agent that comes with Postfix. A transport
table could look something like this:

domain1.example virtual:
domain2.example virtual:

After making your transport table in plain text, you need to make it into a
binary DB file using postmap (see man postmap). At this point, tell Postfix that
there is a transport table and where to find it. You also need to let Postfix know
that we accept mail for those domains. This is done through the
transport_maps and mydestination directives:

transport_maps = hash:/etc/postfix/transport
mydestination = $myhostname, localhost.$mydomain,
 $mydomain, $transport_maps

You can define multiple LDAP sources easily. LDAP source parameters are
documented in README_FILES/LDAP_README in the Postfix source. The
parameter names follow the pattern of <ldapsource>_parameter. The LDAP
source name is defined by use. In main.cf, you'll need one LDAP source
definition per each lookup.

Aliases

The first LDAP source definition is for virtual aliases. We've named this LDAP
source aliases. In our configuration, our LDAP server is running on localhost.
The search base is the top of the hosting subtree we defined in our LDAP
server. We're querying for items where the mail elements match the e-mail
recipient as well as items that are of the courierMailAlias object class. The
destination of the alias is stored in the maildrop attribute. Postfix won't bind
using an account, instead it will do an anonymous lookup:

aliases_server_host = localhost
aliases_search_base =
 o=hosting,dc=myhosting,dc=example
aliases_query_filter =
 (&(mail=%s)(objectClass=CourierMailAlias))
aliases_result_attribute = maildrop
aliases_bind = no

Accounts

When using the accounts source we're looking for entries that have an object
class of courierMailAccount. We request the mailbox attribute as the result:

accounts_server_host = localhost
accounts_search_base =
 o=hosting,dc=myhosting,dc=example
accounts_query_filter =
 (&(mail=%s)(objectClass=CourierMailAccount))
accounts_result_attribute = mailbox
accounts_bind = no

A second source for accounts, accountsmap, also needs to be defined to help
locate accounts when a catchall is used. Without this lookup, a catchall in the
aliases would override virtual accounts in a domain:

accountsmap_server_host = localhost
accountsmap_search_base = o=hosting,dc=myhosting,dc=example

accountsmap_query_filter =
(&(mail=%s)(objectClass=CourierMailAccount
accountsmap_result_attribute = mail
accountsmap_bind = no

Now that the aliases and accountsmap LDAP source are defined, let Postfix
know to use it by defining the virtual_maps parameter in main.cf:

virtual_maps = ldap:aliases

For this example, assume there is a vmail UNIX account created that has a UID
of 125, a GID of 120 and its home directory is /home/vmail:

:virtual_mailbox_base = /home/vmail/domains
virtual_mailbox_maps = ldap:accounts
virtual_minimum_uid = 125
virtual_uid_maps = static:125
virtual_gid_maps = static:120

Set the virtual_uid_maps and virtual_gid_maps to a special static map and hard
code it to the UID and GID of the vmail account. All of the parameters shown
here are fully documented in README_FILES/VIRTUAL_README, which comes
with the Postfix source.

We also need to edit the local_recipient_maps parameter to look at the
virtual_mailbox_maps so Postfix knows what accounts are valid. This is needed
so Postfix can reject mail for unknown accounts:

local_recipient_maps = $alias_maps
 unix:passwd.byname $virtual_mailbox_maps

Courier

There aren't any special instructions for installing Courier, so see its
documentation for full instructions. It should autodetect LDAP and build it in.
You should seriously consider passing the --enable-workarounds-for-imap-
client-bugs option to ./configure, otherwise Netscape mail users may have
trouble interacting with your server. This bends the IMAP protocol a little bit,
but it's better to have happy users than a perfect protocol with unhappy users.

Courier uses an authentication dæmon to keep authentication separate from
the other parts of the system. Configure it so that a valid e-mail account is
either found in either LDAP or PAM. Specify this in authdaemonrc using the
authmodulelist parameter:

authmodulelist="authldap authpam"

All LDAP parameters are in authldaprc. Most parameters are self-explanatory.
To use the Courier schema, you actually have a few modifications to make,
though. You also need to map all virtual accounts to the vmail account. Here is
a summary of the updates you need to make to authldaprc:

LDAP_GLOB_UID vmail
LDAP_GLOB_GID vmail
LDAP_HOMEDIR homeDirectory
LDAP_MAILDIR mailbox
LDAP_CRYPTPW userPassword

Three other settings to be concerned with are LDAP_AUTHBIND, LDAP_BINDDN
and LDAP_BINDPW. These relate to authenticating the user. LDAP_AUTHBIND is
mutually exclusive with LDAP_BINDDN and LDAP_BINDPW. We recommend
using LDAP_AUTHBIND. A comment in authldaprc mentions a memory leak in
OpenLDAP when using LDAP_AUTHBIND, but it has been fixed in OpenLDAP
version 2.0.19.

If you use LDAP_BINDDN and LDAP_BINDPW, you are limited to the crypt, MD5
and SHA algorithms for passwords. SMD5 and SSHA are not available. Also, you
must put the root LDAP password in clear text in authldaprc when defining
LDAP_BINDPW. There are security issues with putting the root LDAP password
in clear text, so definitely use LDAP_AUTHBIND if you can.

The last change is to enable the IMAP server by setting the IMAPDSTART
parameter to YES. You should now be able to use the courier-imap.sysvinit
startup script to start and stop the IMAP dæmon.

Administration

Most of the administration tasks, such as adding, modifying and deleting
accounts and aliases, require modifying the LDAP directory. You can do this
with the OpenLDAP command-line tools or a generic LDAP browser like gq.
These methods are cumbersome, however, because they are generic tools and
are not tailored to the task of administering e-mail accounts. We've been
working on a web administration application called Jamm that is essentially an
application-specific LDAP browser written in Java and JSP. It also has its own
LDAP schema that is a slightly modified Courier schema. Jamm is currently
usable and is constantly evolving. Visit the Jamm web page on SourceForge for
the latest Jamm information.

Account Creation Notes

When you create an account or an alias inside the LDAP database it will
instantly become active as far as the mail system is concerned. For virtual
accounts, note that the UNIX directory in ~vmail is not created at this time.
However, we can work around this because Postfix's virtual delivery agent will
create the necessary directories the first time it has to deliver mail. Due to this
fact, we recommend sending a welcome e-mail as soon as you create the
account.

Account Deletion Notes

When you delete an account or an alias in the LDAP database, it will instantly
become inactive. For virtual accounts, note that the UNIX filesystem isn't
cleaned up. In other words, the data remains on disk until a system
administrator can remove it. This allows you to keep the data from dead
accounts for a grace period in case the account was deleted in error. However,
if another account is created with the same name and the same mail path, the
data will be available to the new account. This could be considered a privacy
violation for the previous user.

Resources

Dave Dribin (dave@dribin.org) has been using UNIX since 1991 and Linux since
1993. He has been professionally developing software for or on UNIX since
1995. Dave is currently working as an independant consultant at the National
Association of Realtors.

Keith Garner has been using Linux since January 1994. He has been
professionally administrating and developing software for UNIX since 1997.
Keith is currently employed by the National Association of Realtors.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/5917s1.html
mailto:dave@dribin.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux from Kindergarten to High School

Michael Surran

Issue #106, February 2003

Moving the school computer lab to Linux was not an easy decision to make—
but it was a beneficial one.

As the bell rings to begin class at Greater Houlton Christian Academy,
enthusiastic students sit down at their shiny, new computer workstations. In
one corner, the red cabinet housing the server hums quietly as two stuffed
penguins look on fondly from their perch. Other penguins keep watch from
different locations as the students enter their user names and passwords to
access their accounts. Ask a student who “Tux” is, and he or she will point to the
large penguin painted on the front wall of the computer lab and say, “He's the
Linux penguin!” About this time KDE has loaded, and young boys and girls are
opening the application they need for class as easily as kicking a ball.

Figure 1. First graders learning some penguin art fundamentals.

Now for a little history. Greater Houlton Christian Academy (GHCA) is a private
school and nonprofit organization in Maine. As such, it does not have the same

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

access to funding as the public school system. As the computer science teacher
and system administrator, this means I have to be creative about providing our
students with computer technology while working with a tight budget. In the
past I relied on area businesses and generous individuals to donate their used
computers. While these donations were a great blessing to us, they were a
temporary solution at best.

Last year it became quite evident that we would need to replace our old,
secondhand computers running Windows 95. The decision to move from
donated computers to new computers was based on many factors, though our
primary goal was to make sure our students had the best technology available
for the enhancement of their educational experience. Therefore, this would be
a software upgrade as well as a hardware upgrade. In fact, choosing the
software was by far the bigger challenge.

Interestingly enough, it was during this time that many schools in the western
US were being audited by Microsoft concerning the school's use of Windows
and Office software. I began to realize my ignorance concerning exactly how
strict and inflexible the Microsoft EULA is. It was also during this time that
Microsoft's new licensing initiative, called Software Assurance, was causing
quite a stir in the tech headlines. As my research opened my eyes to the
various limitations to proprietary software, I began to think that the answer for
us might be found in open-source software.

The decision to switch to an open-source platform for our new computer lab
was not an easy one. My experience was with DOS and various versions of
Windows and not with UNIX-compatible operating systems. I had experimented
with Linux a few years earlier but found it somewhat difficult and incomplete.
Because some time had passed, I decided to give Linux another try. Going with
Mandrake's 8.0 distribution, I installed Linux at home to see if it could replace
Windows in a desktop environment. To my amazement, I found Linux to be
much more capable this time around. I was one step closer to making my
decision to switch our computer lab to the Linux OS.

Other factors went into the final decision to go with open-source software, not
the least of which was cost. By purchasing bare-bones computer “kits”, we were
able to save considerable money on the hardware. Part of the savings in
purchasing a bare-bones system is that the computer does not come with an
operating system. We knew by then we would have to spend more money on
software than we did on hardware if we went with Microsoft. Not only would I
need to consider the initial purchase of the operating system and application
software, but I would also need to factor in the costs of upgrading our software
every couple of years. Needless to say, going with an open-source platform
would save us considerable money now and in the future.

Another key issue was flexibility. As many of you know, it takes time to install an
operating system, customize it for the particular hardware it runs on and install
the desired applications. Having purchased 20 new, identical computers, it
made sense to completely configure one machine and then clone the hard
drive to the other 19 computers. However, Microsoft's EULA prevents a user
from doing this, even if they have 20 copies of Windows. Not only would Linux
save me considerable time by allowing me to clone my configured PC, it also
gave me great flexibility in the degree to which I could customize the OS for the
hardware. By recompiling the kernel to take advantage of our specific
hardware, I could fine-tune the OS to run at peak performance. Linux would
even save us money in the cloning process, thanks to the dd command.

A few aspects, however, made the decision to switch to Linux a difficult one.
The smaller software base to choose from and the lack of mature drivers for
our hardware were among the lesser obstacles. The major obstacle was my
own lack of experience with the Linux OS. In fact, most of the money and time
spent in the software upgrade of our computer lab was for a shelf full of books
I had to purchase and read to really feel confident using and teaching Linux. It
isn't always easy to teach an old dog new tricks, but I found the experience one
of the most challenging and rewarding experiences of my IT career.

Today our private school of over 170 students has one of the finest computer
labs in Maine. We have 20 computers with Athlon 1600+ XP processors, 128MB
of RAM, 20GB hard drives and all the accessories—3-D graphics, sound, 17"
monitors and 100Mbps Ethernet networking. Our computers run Mandrake
Linux 8.2 with KDE 3.0.2. What is most amazing is we upgraded our computer
lab for under half the cost of what many neighboring schools paid for inferior
equipment. Most of this savings was the result of switching to Linux.

Our servers also run Linux. Using NFS, students can access their accounts from
any computer in the lab. Student- and staff-owned files are backed up on a
daily basis, so gone are the days of “the computer lost my homework.” Our
proxy server runs Squid to help speed our wireless internet connection to 20
workstations, and we use proxy software along with iptables to provide firewall
protection. A nice program called Dansguardian provides filtering to protect
our children from pornography and other inappropriate content.

Many of you may be asking at this point, “How do you use Linux in teaching
your students?” GHCA is a K-12 school, and so we strive to offer some level of
computer training for each grade. Kindergarten students, for example, can use
such programs as Potato Guy to practice hand-eye coordination and familiarize
themselves with how to use a mouse to manipulate objects on the computer
screen. Elementary and secondary teachers integrate the computer lab into

their curriculum by using the computer for research, multimedia
enhancements or even something simple as coloring digital pictures.

Figure 2. Potato Guy develops mouse skills.

Starting with grade seven, education in computer science takes a more formal
approach. Seventh graders are taught keyboarding skills using programs such
as KTouch and TuxTyping. Grade-eight students are taught the basics of
programming with the kate editor and yabasic interpreter. It is during this class
that students gain a better understanding of how computers process
instructions.

Figure 3. Students learn touch typing with KTouch.

Computer Fundamentals is a one-credit course that introduces the ninth-grade
student to “how a computer works” and “how to work a computer”. During the
second semester, students learn about the purpose and use of the operating
system and various applications, such as word processors, spreadsheets and
web browsers. Because our computers run Linux, it is the Linux OS and open-
source software that students learn in this class. Being sensitive to the fact that
Microsoft currently dominates the PC market in corporate America, I do spend
time discussing the similarities and differences between Linux and Windows.

Tenth- through twelfth-grade students can chose from a variety of computer
electives, including how to upgrade and repair computers, web site design,
advanced programming and even an upcoming course in robotics. In making
the switch to Linux, I easily found all the tools needed to teach these courses
using open-source software. In many cases, the open-source software we now
use is superior to the proprietary software originally donated to us.

This is our first year with our new computer lab, and I am very pleased with
how it is progressing. One of the most pleasing experiences I am having as a
system administrator of a Linux-based lab is the actual ease of administration.
Once I set something up in Linux, I rarely need to worry about it again. This was
not the case with Windows. Last year we were constantly suffering from system
crashes, frozen servers, strange bugs and the infamous “blue screen of death”.
Needless to say, it was a frustrating situation for many students. While Linux is
not bug-free, it has been a far more stable operating system for both our
workstations and servers. Linux also has shown itself to be a much more

versatile operating system to administer in a network environment. My job is
more pleasurable thanks to our switch to Linux.

As a teacher of computer science, I am finding this year a fascinating test for
Linux. Very few of our students, parents or teachers knew what Linux was
before this year. I have actually found this to be a great advantage in teaching
computers. In the past, I have found students to be disinterested in learning
about the personal computer running Windows, because it is something most
of them grew up with at home. This lack of interest made it more difficult to
teach the more-advanced aspects of the operating system. However, Linux is
something completely new, different and unexplored. Instead of being
intimidated by the change, as many adults might be, young people are excited
to explore the “uncharted territory”. This opens a door for me as a teacher,
allowing me to educate eager minds in the more-advanced aspects of
computer operating systems and software. In fact, it only took two weeks until
students began to ask me, “Where can I get Linux?”

People sometimes ask me, “Is teaching our students Linux preparing them for
the workplace?” This question is based on the fact that Microsoft is the current
dominating presence in operating systems and office software. It is a question I
have thought over a long time, and the answer I always come up with is, “Yes,
most definitely.” The basic principles of any type of operating system, office
application or other similarly grouped software are the same. A student who
becomes proficient in Linux will not find themselves lost in a Windows
environment. I have found Linux to be the more advanced of the two operating
systems, yet our students are very quickly and easily learning it. The process of
copying a file or formatting a paragraph is not so different between one
operating system and the other. The important thing is we are able to offer the
latest in hardware and software tools to train our students in these
fundamental principles—something we could not do if we went with
proprietary software.

Another question that may be even more important to ask is, “What is the
future of Linux?” When our students graduate a few years from now, will they
enter a Microsoft-dominated workplace or will the tide have changed? Even in
our small New England town of Houlton, Maine, businesses are beginning to
look to Linux as an alternative to proprietary operating systems. These
businesses will need qualified personnel familiar with the Linux operating
system and open-source applications. Greater Houlton Christian Academy will
be graduating young men and women who will be able to meet that need, a
claim not many schools in our nation can currently make. In fact, some of our
students may go on to write the future applications for Linux, giving back to the
community that helped them during their school years.

For us, switching to open-source software running on the Linux operating
system has been the right choice, allowing us to provide our students with
modern equipment and software for a fraction of the cost of a computer lab
running proprietary software. If Linux continues to grow in popularity and gain
a foothold in the workplace, we will look back at our choice as one of the most
important decisions we've ever made.

email: computerlab@ghca.com

Michael Surran is the system administrator and computer science teacher at
Greater Houlton Christian Academy (www.ghca.com) in Northern Maine.
Michael enjoys church, outdoor adventures, target shooting, sci-fi, collecting
penguins and his wife, Lisa, who also teaches at GHCA.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:computerlab@ghca.com
http://www.ghca.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Removing Red-Eye with The GIMP

Eric Jeschke

Issue #106, February 2003

Tired of photos where all your family and friends look like Satan's spawn?

With the abundance of low-cost digital cameras and scanners available these
days, more and more Linux users are looking to the popular, open-source GNU
Image Manipulation Program (The GIMP) when editing their digital images. This
article describes a simple technique for eliminating the dreaded “red-eye” from
your candid flash photos using The GIMP.

First, a little background on red-eye—what causes it and what you can or can't
do to avoid it. You can see a good example of red-eye in Figure 1. The little girl's
red eyes are not the product of staying up late and reading LJ; it's a result of an
ordinary flash from a digicam. It's important to note that red-eye occurs only
under a particular combination of circumstances: the camera is within a
particular range of the subject, the subject is looking toward the camera and
the flash is close to the taking angle of the lens. The problem is caused by the
intense directed light of the flash reflecting off the retina in the back of the eye,
straight back into the camera lens. The color is red because the light is filtered
through the blood capillaries in the eyes. For a more detailed explanation, see
the one offered in the “How Stuff Works” series (www.howstuffworks.com/
question51.htm).

If you must take a flash photo because of dim lighting, you can do several
things at picture time to reduce or eliminate red-eye and avoid having to edit
the image later.

• Move the flash farther off axis from the picture-taking angle, so the
reflected angle is changed (e.g., using a flash bracket or remote trigger).

• Bounce the flash (e.g., off of a white ceiling).
• Move closer or farther away from the subject.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.howstuffworks.com/question51.htm
http://www.howstuffworks.com/question51.htm

While all of these are effective at reducing or eliminating the red-eye effect,
they are, unfortunately, not viable options for the casual shooter. For one thing,
the flash on most consumer cameras is not designed to allow bounce flash and
is fixed very close to the lens because the camera is designed to be compact.
Furthermore, changing distance is not always an option because of the low
power of the built-in flash unit, the constraints of the photographer's position,
the lens' zoom limitations or other issues.

Most cameras sold in the last several years have a “red-eye reduction” flash
mode. Why not just use that? The red-eye flash mode works in most cases by
firing the flash repeatedly at one or more low-power settings before opening
the shutter and firing the final full-power flash. The preflashes cause the
subject's pupils to close down, thus providing a narrow exit channel for the
reflected light, thus “reducing” red-eye. Unfortunately, it often also causes the
subjects to grimace as their eyes, adjusted to a darkened setting, respond to
the sudden intrusion of intense light. As a result, in many shots taken with red-
eye reduction mode flash, the subjects have a “deer caught in the headlights”
look, have their eyes closed or are squinting. So it seems impossible in many
situations to avoid red-eye if you want a decent candid flash photograph. Here
is where The GIMP comes to the rescue.

The technique I describe allows you to retain as much of the all-important
tonality (shades of lightness and darkness) of the different areas of the pupil.
Also, it preserves the catchlight (the reflection of light off of the cornea over the
pupil that gives the impression of life and vitality in the subject).

Most of the menus in The GIMP are accessed by clicking the rightmost mouse
button in an image window. In the description that follows, a right-click is
abbreviated RC. If I describe a GIMP action that needs to be invoked, I mention
the series of menus or a keyboard shortcut in parentheses. For example, open
the image (RC-->File-->Open), means right-click in the image window and
choose File and then from that menu choose Open. If a keyboard shortcut
makes more sense, I'll list the combination of keys to press. For instance, copy
the image (Ctrl-C) means press and hold the Control key and press C.

Here's the technique. Start The GIMP and load your red-eye image (RC-->File--
>Open), as shown in Figure 1. Once you've got your image loaded, zoom in
close on the eyes (by pressing + a couple of times and scrolling as necessary) so
you can get a good, large view of the red pupils, as shown in Figure 2.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f1.large.jpg

Figure 1. Sweet Little Girl—Or Devil Child?

Figure 2. Close-up of the Pupils to Be Fixed

Next, we want to select only the pixels that constitute the pupils of the subject's
eyes. There are a number of ways to go about this, but one I've found that

https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f2.large.jpg

seems to work fairly well is the fuzzy select tool, also known as the “magic
wand”. The fuzzy select tool works by selecting contiguous areas of color/tone.
By this we mean areas that differ by no more than a certain threshold in actual
pixel values (that's where the “fuzzy” part comes in; we can control the
threshold).

The fuzzy selection tool works best in areas of the image where contrast can be
maximized between the desired selection and the rest of the image (in this case
the pupil and the iris). All images in RGB mode (the normal mode for most color
images) are made of three channels: red, green and blue, each containing pixel
values for the entire image. If you examine these channels individually, you will
usually find that the green channel has the most contrast for fuzzy selection of
the pupils.

Bring up the Layers dialog (Ctrl-L) and click on the Channels tab. Then deselect
the Red and Blue channels. The Layers dialog should look like Figure 3, with
only the Green channel highlighted. We haven't turned off the visibility of these
two channels, so the image window won't look any different. But by selecting
only the green channel, our fuzzy select examines only the green channel pixel
values in deciding which adjacent pixels to select.

Figure 3. Color Channels in the Layer Display

Now double-click on the fuzzy select (magic wand) tool in The GIMP toolbox
window to see the tool options. You'll need to experiment with the Threshold
setting, but generally you'll want to increase it from the default. Try the value I
used here, shown in Figure 4. You also should check the Feather option and
give it a small amount, as shown.

Figure 4. Increasing the Threshold

Now click on the red part of one pupil in the image. You should see it select
most of the pupil with a “marching ants” outline. If it doesn't, clear the selection
(Shift-Ctrl-A), increase the Threshold value slightly and try again. Conversely, if
areas outside the pupil are selected, clear the selection, reduce the Threshold
and try again. Another possibility is to use the Grow Selection (RC-->Select--
>Grow) and Shrink Selection (RC-->Select-->Shrink) dialogs to slightly enlarge or
decrease the selection if it looks mostly right, but you are a few pixels off either
way.

Once you've got a decent selection on one pupil, hold down the Shift key and
click on the red part of the other pupil (holding Shift during a selection adds to
the current selection). At this point you should have both pupils selected, as
shown in Figure 5.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f5.large.jpg

Figure 5. Both Pupils Selected

Tip for advanced GIMP users: if you know about quick masks, you can fix up an
imperfect selection here. Click on the quick mask button, apply a few
appropriate paint strokes with a small, fuzzy brush, and then go back to
selection mode.

Now go back to the Layers dialog, select the Red channel and deselect the
Green. Once you've verified that only the Red channel is selected, desaturate
the selection (RC-->Image-->Colors-->Desaturate).

Now it's time to evaluate your results. Press Ctrl-T to toggle the visibility of the
selection off; the “marching ants” around the pupils should disappear so you
can get a better look. It is important to realize that the selection is still active,
just invisible. If you forget to toggle it back on, you can easily forget that you
have a selection on the canvas, which can make further edits rather confusing.

When you are satisfied with the results, toggle the selection visibility back on
(Ctrl-T), deselect everything (Ctrl-Shift-A) and zoom out (-) to see your
handiwork in the unzoomed view and to make further edits. If you are
unsatisfied with the result, toggle the selection visibility back on (Ctrl-T) and
undo (Ctrl-Z) back to the point where you can make changes in the selection or
rectify the problem with some other approach.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f5.large.jpg

I have to mention one variation on this technique that I think gives slightly
better results. It requires that you have the Channel Mixer plugin activated in
your version of The GIMP.

The Channel Mixer is a great plugin for converting color selections or entire
photos to black and white, as it gives you a lot more control over the process
than the Desaturate or RGB-->Grayscale conversions. The Channel Mixer wasn't
part of my stock Red Hat-based GIMP 1.2.3, but I found it at The Gimp Plugin
Registry (registry.gimp.org). Simply compile it and drop it in the .gimp-1.2/plug-
ins folder in your home directory.

In this variation you do everything as I mentioned above, but instead of the
final step of desaturating the red channel, you (re)select all of the channels and
bring up the Channel Mixer (RC-->Filters-->Colors-->Channel Mixer). The
Channel Mixer allows you to mix the RGB values in different percentages.
Check the “Monochrome” box and mix down the Red channel significantly and
boost Green. I use settings of Red 10%, Green 60% and Blue 30%, as shown in
Figure 6. You may need to experiment to see what gives you the most realistic
pupils for your photo subjects, but this is a good starting point.

Figure 6. Customized Channel Mixer RGB Values

When you have the mixer settings to your liking, click OK. If you're not sure you
like the result and want to try another mix, Undo (Ctrl-Z), toggle the selection
visibility back (Ctrl-T) and run the same filter again (Shift-Alt-F). You can see the
result of running the Channel Mixer in Figure 7: the pupils look good and dark,
with gentle changes in tonality around the edges and a good-looking catchlight
in each eye. As before, once you're satisfied with the result, toggle the selection
visibility back on (Ctrl-T), deselect everything (Ctrl-Shift-A) and zoom out (-) to

http://registry.gimp.org

see your handiwork in the unzoomed view. Figure 8 shows the final result using
the Channel Mixer variation.

Figure 7. Pupils That Look Human, Thanks to Channel Mixed

Figure 8. The Final Channel Mixed Photo

https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6388f8.large.jpg

This technique may seem slightly involved at first, but it takes only a couple of
minutes once you have the hang of it. Best of all, the results are excellent,
especially when printed on a high-resolution photo inkjet printer. Throw this
technique into your bag of GIMP tricks, and you'll never again have to worry
about red-eye ruining your candid flash photos.

email: jeschke@mano.uhh.hawaii.edu

Eric Jeschke (eric@redskiesatnight.com) holds a PhD in Computer Science from
Indiana University and has worked as a software engineer, university professor
and freelance consultant. He lives in Hawaii with his wife, kids and an
overweight cat. Eric enjoys his family, outdoor adventures, taking photographs
and running Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jeschke@mano.uhh.hawaii.edu
mailto:eric@redskiesatnight.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Linux-Based Steam Turbine Test Bench

Alexandr E. Bravo

Issue #106, February 2003

How the Central Boiler and Turbine Institute in St. Petersburg ensures safety
and accurate control when testing turbines for power plants.

Despite the fact that mathematical models and the incredible growth in
computer power allow one to imitate and calculate almost everything now,
there are some areas where real experiments are still very important and can't
be replaced with computer models.

One of these areas is the design of low-pressure steam turbines (LPMTs).
LPMTs are an important part of any power plant working on a steam or
combined gas-steam cycle and generate up to 20% of the power plant's energy.
Unlike high- and middle-pressure turbines, where steam has well-known
properties, the LPMT works with nonstructured, nonsymmetric wet steam. No
fully proved mathematical models exist yet for this kind of flow. Real
experiments are crucial for design of the turbine flow path and improvement of
the turbine computer models.

There are only a few such test benches in the world. One of them is a part of
the Central Boiler and Turbine Institute in St. Petersburg, Russia, where I have
worked for the last seven years. Imagine a hall 18 meters in height and 700
square meters in area filled with pipes, wires and measurement equipment.
There is a cyclopic construction in the centre (see Figure 1), which is the casing
of the model turbine with two huge exhaust pipes. During the tests, it
consumes 40 tons of steam per hour, using live steam at a pressure of 30 bars
and a temperature of 400°C on the bench inlet, about 4 bars and 200°C on the
model turbine inlet and deep vacuum, as low as 30 mbars absolute, on the
exhaust.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f1.large.jpg

Figure 1. The turbine under test is in the center, surrounded by steam pipes and test
equipment.

Computer and Measurement Equipment Structure

During our joint project Tanja with Alstom Power, the information
infrastructure of the test bench was renewed. Now it includes three main parts:
1) a high-accuracy scientific measuring system, called Data Acquisition System
for flow path measurement, or DAS-Flow; 2) a technological measuring system,
called Data Acquisition System for Operational Personnel, or DASOP; and 3)
workstations for researchers and engineers.

The DAS-Flow system originally was supplied mostly by our customers. It
provides the capabilities to measure more than 200 pressures and 50
temperatures along the flow path. A separate part of this system allows us to
investigate the distribution of pressures inside the turbine with 12 movable
probes. Each probe can be moved in two directions, axis and angle, by stepper
motors through a remote-control system. All the pressure measurements are
based on PSI-9000 series pressure transmitters from PSI, Inc. These
transmitters provide very high-measurement accuracy: below 0.01% for a few
reference pressures and below 0.1% for the rest. The system performs the
measurements only from time to time, under stable conditions. It's not
designed for dynamic pressure measurements.

The DASOP system was built by ourselves to provide on-line control of the
whole bench during the test. It works in real-time mode, collecting data from
more than 150 pressure, temperature, speed of rotation and vibration sensors.
This data is presented for operational personnel on two monitors and a serial
terminal in the control room (see Figure 2) and includes information about the

https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f1.large.jpg

current state of water, oil and steam systems of the bench. DASOP also
provides a safety control, with some warning and emergency levels.

Figure 2. DASOP shows operational and safety information in real time.

All the computers we use, except one IBM RISC workstation, are normal PCs,
ranging from 386s up to Pentium 4s and Athlons.

Why Linux?

When I came to the Tanja Project in 1995 I had a lot of practice building data
acquisition and evaluation systems based on Russian clones of the Digital
PDP-11 running the RT-11 or RSX-11 operation systems. In 1994, I started to
play with my first PCs and quickly realized that DOS is not suitable for our tasks
because of its single-task and single-user nature. During that time, my brother
Mike brought me my first Linux distribution, Slackware as I recall, based on a
Linux kernel version somewhere around 0.99. I discovered right away that I
could solve almost all of my tasks by studying the sources of similar programs
and using them as prototypes. My first data acquisition system was finished in
1994. It was ncurses-based, and it still works for my former employer without
any maintenance from me.

At the beginning of the Tanja Project, we had only the DAS-Flow system
supplied by our customers. It was a zoo of operating systems. We had MS-DOS,
Microsoft Windows 3.11 and NT, QNX and AIX. The positive side was the fact
that all the computers were joined on a local TCP/IP network.

Thinking about the development strategy for the whole system and keeping my
experience in mind, we decided to stay on Linux as a base for the development
of our technological measuring system, DASOP, and for the core of our
network. The main reasons were the following:

• The availability of a wide range of ready-to-use applications and the
source code of the applications for studying and templating.

• Great stability and reliability on cheap PCs, which is one of the top
requirements for our applications.

• We have a very limited budget, so the zero cost of Linux was important.
• A very friendly community available through Fidonet echoes and Usenet

newsgroups.

What do we have now? The core of our IT structure is six PCs running Linux.
Over more than six years there have been no cases of failure, we have
measured uptimes in years, and there have been only two reasons for
rebooting: hardware upgrades and long power outages our UPS couldn't
handle.

We started with Red Hat, and we still have two computers running Red Hat 4.1
Vanderbilt and Red Hat 5.0 Hurricane. Then we switched to a Russian localized
RPM-based distribution named KSI and came to Debian last year. For the
moment, our main server and my development machine work under Debian/
Woody. We are very satisfied with Debian, and I think that this year we'll switch
all our Linux boxes to Debian.

The Network

All computers are connected to the local network, split into three segments (see
Figure 3). The first segment includes all the DAS-Flow computers; the second,
the DASOP computers and office computers; and the third looks to the outer
world via the leased line. The third segment includes only one computer, which
acts as our gateway to the Internet, with a firewall based on ipchains and mail
server.

Figure 3. The Test Bench Local Network Structure

In the “middle” of the network is our main server. It acts as file- and print-server
for all the computers, but this is not its main task. During the tests, we collect a
large amount of data. All this data, as raw, measured values and later as

https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f3.large.jpg

evaluated parameters, is automatically stored in a MySQL database. An Apache
web server provides a powerful interface to the database for all users—our
local researchers and our customers abroad—through HTTPS.

Any registered user needs to have only a browser to access the database,
search the data and get results in a text or graphical form. PNG, CGM and PDF
formats are available. We use mostly PHP, as an Apache mod_php module, for
generating data-driven pages. Almost all graphs are generated on the fly using
the gnuplot program via Perl CGI scripts, which select the parameters from the
database, pipe them to gnuplot and then pass the generated image to Apache.
We wrote more than 50 different CGI scripts to provide users with all possible
kinds of plots, where the user can select everything—what parameters to plot,
search conditions, kind of characteristics to plot, auto or manual axes scaling,
kind of smoothing and approximation and other choices.

I have to mention specifically the important role of gnuplot in our project. In my
point of view, it's one of the greatest scientific plotting utilities with a wide
range of capabilities and output formats. It's still under active development,
and I'm always trying to use the latest development versions, which are quite
stable even for my production environment. I also use the well-designed
JpGraph PHP classes for generating certain plots, especially some kinds of fast
search results.

Another important part of the software we developed is the technological data
acquisition system DASOP (see Figure 4). It has a modular structure and
includes the data acquisition module, data evaluation module, socket
communication module and application modules.

Figure 4. The Structure of the DASOP System

The data acquisition module works with a Programmable Data Controller (PDC)
connected by an RS232 interface to a PC. It gets about 150 values from the PDC
every second and performs some manipulations with PDC digital I/O if needed.
All the measured data is placed in a shared-memory segment as a two-
dimensional array, where each column is a full set of all parameters' raw
values. The number of columns is fixed, so we always have a fixed number of
last-measured datasets in memory.

The evaluation module, which is synchronized with data acquisition modules
through a mechanism of semaphores, gets the last measurement set from the

shared memory, makes some on-line evaluations and places evaluated data in
the same column, extending its length.

The socket communication module provides access to the shared-memory
segment for the remote application modules. There are several application
modules. Some of them can be run locally with direct access to the shared-
memory segment with measured and evaluated data; another can do it
remotely via the communication module. Application modules include data
logging modules, a safety control module and data presentation modules.

Data presentation modules provide different kinds of graphical presentation of
the data in real time. Some examples are parameters over time plots, bar plots
(where the color of the bar shows the state of the parameter—normal, warning
or emergency) and panels looking like real external devices.

Figure 5. DASOP Data Presentation Modules

Because of our scheduling requirements we do not need hard real-time
operation. Soft real time is enough for us, so we use the normal Linux kernel
for our hardware. Data acquisition, evaluation and communication modules are
written in plain C and work on the same PC. Safety, logging and some of the
presentation modules work on that PC also. Part of the presentation modules
work on another PC, which works as an X terminal for the first one. Both PCs,
with their monitors, are located in the control room of the test bench to
provide all the information to operational personnel. Some presentation
modules work on the researchers' PCs, getting information via the
communication module.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6425f5.large.jpg

The development of presentation modules has changed over time. At first, they
were ncurses-based programs for the Linux text console. Later, I switched to X,
using only standard X11 and Xt libraries. The next step was trying Motif, which
we bought from SuSE. The open-source GTK appeared one or two years later,
and I switched to it. Over the last two years, almost all presentation and other
modules have been written in Tcl/Tk, with an extensive use of the BLT
extension. I found Tcl/Tk useful for fast GUI development, serial and socket
communications and data presentation.

Conclusion

Several years of software development and use in a real industrial environment
showed us (and our customers) that open-source solutions are effective from
any point of view—cost, time, reliability or function set. Our next steps will be
replacing the rest of the proprietary software in our project with open-source
software.

Resources

email: abravo@tctube.spb.su

Alexandr E. Bravo was born in 1959 in Leningrad, which is now again (as it was
300 years ago) St. Petersburg, Russia. He graduated in 1982 from Polytechnic
University with the specialty “Automation and Telemechanics”. He has worked
with Linux since 1994.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6425s1.html
mailto:abravo@tctube.spb.su
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The USB Serial Driver Layer

Greg Kroah-Hartman

Issue #106, February 2003

Understanding the USB-to-serial layer and how to get devices into it.

In my last column [see LJ December 2002], we covered the serial layer in the 2.5
(hopefully soon to be 2.6) kernel tree. We mentioned in passing that a USB-to-
serial driver layer in the kernel helps out in working with those types of device
drivers. This time we discuss that layer in more depth.

USB Serial Layer's History

A long time ago (in kernel development time, at least), a single USB-to-serial
device driver was written and accepted into the kernel tree. It barely worked for
one type of device and didn't work at all on SMP machines. As no standard
USB-to-serial protocol existed, all devices used a custom protocol created by
the individual vendors. The reason why there is no standard protocol is a long
and sordid story; check the archives of the linux-usb-devel mailing list for the
details. Soon a second type of USB-to-serial device was implemented within the
first driver, sharing the reserved major and minor numbers. Over time, more
and more devices were added to the driver until it was becoming an unwieldy
mess. With the help of Peter Berger and Al Borchers, the original author of the
driver rewrote the infrastructure and created what is now known as the USB-to-
serial layer. This bit of code allows different USB-to-serial drivers to be written
with a minimal amount of code, all sharing the same major and minor number
range. It insulates the individual drivers from some of the complexity in the tty
layer and the USB layer. It also allows the drivers to be compiled as individual
modules and loaded only when they are needed.

In the 2.5 development cycle, the serial layer was created in order to provide an
easier way to write serial port drivers, so as not to have to deal with the tty
layer directly. Hopefully, someday the USB and serial layers will be merged.
Both maintainers want to see this happen, but they do not have the time to do

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

it. (They would gladly accept patches to accomplish this, if someone is looking
for a project.)

In this article we cover the basics of the USB-to-serial layer, detailing how to
register and unregister a driver and how to set up the main structures needed
for a driver.

Registering and Unregistering a USB Serial Driver

All of the code and examples in this article are for the 2.5/2.6 kernel tree. The
2.4 and 2.2 kernel trees also support USB-to-serial drivers, but their interfaces
are a bit different in places. For ease of use, we focus on only one kernel tree. If
you have any problems porting a USB-to-serial driver to these older trees (once
it is running on 2.5), please let me know.

To register a USB-to-serial driver with the kernel, the driver has to do two
things: register with the USB-to-serial core and register with the USB core.
Registering with the USB-to-serial core tells it to call your driver when new
devices are found by the USB subsystem, and registering with the USB core is
needed to tell it what kind of devices your driver can accept.

To register with the USB core, all you need is a list of USB devices that your
driver will work for, in traditional USB device ID format:

static struct usb_device_id id_table [] = {
 {USB_DEVICE(MY_PRODUCT_ID, MY_DEVICE_ID)},
 {} /* Terminating entry */
};
MODULE_DEVICE_TABLE (usb, id_table);

This table is needed so the USB core knows what devices the driver can accept
and the user-space hot-plug code knows what kind of devices are used. See my
article “How the PCI Hot Plug Driver Filesystem Works”, LJ May 2002, for more
information about this table and how the hot-plug code uses it.

Then, a simple USB device-driver structure is created with this ID information:

static struct usb_driver tiny_driver = {
 .name = "tiny",
 .probe = usb_serial_probe,
 .disconnect = usb_serial_disconnect,
 .id_table = id_table,
};

The .probe and .disconnect fields must be set to point to the USB serial core's
functions because that type of logic is handled by it and not by your driver.

Then, a simple call registers this driver with the USB core:

usb_register (&tiny_driver);

After this, the USB serial driver must be notified of the driver with a call to:

usb_serial_register (&tiny_device);

This function takes a pointer to a struct usb_serial_driver_type, which will be
explained in the following section.

To unregister a driver, the same steps have to happen, but in reverse order.
First, we unregister with the USB serial core:

usb_serial_unregister (&tiny_device);

Then, we unregister with the USB core:

usb_unregister (&tiny_driver);

struct usb_serial_device_type Explained

To register with the USB serial core, the usb_serial_device_type structure must
be filled. This structure can be found in drivers/usb/serial/usb-serial.h and is
defined as the following:

struct usb_serial_device_type {
 struct module *owner;
 char *name;
 const struct usb_device_id *id_table;
 char num_interrupt_in;
 char num_bulk_in;
 char num_bulk_out;
 char num_ports;
 struct list_head driver_list;
 int (*probe) (struct usb_serial *serial);
 int (*attach) (struct usb_serial *serial);
 int (*calc_num_ports) (struct usb_serial *serial);
 void (*shutdown) (struct usb_serial *serial);
 int (*open) (struct usb_serial_port *port,
 struct file * filp);
 void (*close) (struct usb_serial_port *port,
 struct file * filp);
 int (*write) (struct usb_serial_port *port,
 int from_user,
 const unsigned char *buf,
 int count);
 int (*write_room) (struct usb_serial_port *port);
 int (*ioctl) (struct usb_serial_port *port,
 struct file * file,
 unsigned int cmd,
 unsigned long arg);
 void (*set_termios) (struct usb_serial_port *port,
 struct termios * old);
 void (*break_ctl) (struct usb_serial_port *port,
 int break_state);
 int (*chars_in_buffer)
 (struct usb_serial_port *port);
 void (*throttle) (struct usb_serial_port *port);
 void (*unthrottle) (struct usb_serial_port *port);
 void (*read_int_callback)(struct urb *urb);
 void (*read_bulk_callback)(struct urb *urb);
 void (*write_bulk_callback)(struct urb *urb);
};

This is a rather large structure, but it's still smaller than either the tty layer's
structure or the combination of the serial layer's structures, both of which are
alternatives to using the USB serial layer.

Let us describe what all of these fields are used for and whether they are
necessary. The owner field is a pointer to the module that owns this device. It
should be set to the THIS_MODULE macro. When this is set, the module
reference count logic is handled by the USB serial core, which is much safer
than trying to do it on your own.

The name field is a pointer to a string that describes this device. This string is
used in the syslog messages when a device is inserted or removed. It is also
used in the /proc/tty/driver/usb-serial file to show what device is connected to
what port.

The /proc/tty/driver/usb-serial File

The id_table field is a pointer to a list of usb_device_id structures that define all
of the devices this structure can support. This field can be identical to the
pointer that is passed to the USB core. If your driver needs to do different
things for different types of devices, however, you can set up different
structures describing these devices. An example of this is the Keyspan driver,
which handles all of the Keyspan USB serial devices and needs different
functions to be called for different devices.

The num_interrupt_in field is the expected number of interrupt in endpoints
this device will have. An endpoint is a USB term, defined in the USB spec
(www.usb.org). If you do not care about having the USB serial core check for
this value (matching it up against any seen devices), use the NUM_DONT_CARE
macro defined in usb-serial.h.

The num_bulk_in and num_bulk_out fields state the number of bulk in and bulk
out endpoints this device will have. Again, the NUM_DONT_CARE macro can be
used here if you do not want the core to pay attention to this value.

The num_ports field indicates the number of different ports this device will
have. A single USB serial device can contain many different physical serial ports.

The driver_list field is used by the USB serial core to keep track of all the
different drivers registered with it; it should not be used by the individual
drivers.

The rest of the fields in the structure are all optional function pointers. If a field
is not set, the generic USB serial driver's related function will be called. This
allows a driver to be written with a minimal amount of code, if it happens to

https://secure2.linuxjournal.com/ljarchive/LJ/106/6434s1.html
http://www.usb.org

work the same way as the generic driver does. If not, almost all of these
functions will need to be defined. These function pointers are divided into three
groups: USB life-cycle pointers, tty life-cycle pointers and urb callback pointers.

The Generic USB Serial Driver

USB life-cycle function pointers consist of probe, calc_num_ports, attach and
shut down. They are all called at different points in time as a USB device is
initialized and shutdown. The probe function is called when a device matching
one of the the id_table devices is inserted into the system. This call happens
before the device has been fully initialized by the USB serial core. It can be used
to download any needed firmware to the device. In addition, any other early-
initialize commands that the device needs can be sent at this time. If 0 is
returned, the USB serial core continues on with the initialization sequence. Any
other value will abort the call and notify the USB core that this device is not
claimed by any drivers.

The calc_num_ports function is called to determine how many ports this device
has. This should be used only by devices that can dynamically determine their
ports. Any return value overrides the num_ports field in the
usb_serial_device_type structure. It is called after the probe function is called
but before the attach function is called.

The attach function is called when the struct usb_serial structure is fully set up.
Any local initialization of the device or any private memory structure allocation
can be done in this function. The shutdown function is called when the device
has been removed from the system. Any local memory allocated for this device
should be freed up at this time.

tty layer function pointers consist of open, close, write, write_room, ioctl,
set_termios, break_ctl, chars_in_buffer, throttle and unthrottle. If you recall the
article on the tty layer [“The tty Layer”, LJ August 2002],the these match up with
the tty layer function call of the same name, with a few twists. First off, they all
pass in a pointer to the specific usb_serial_port structure that is being operated
on, and some of the functions are only called when something needs to
happen.

The open function is called the first time open() is called on a port, but not for
any subsequent calls to open(). Any urb submission the driver needs to do to
start receiving data, or any device-specific messages that should be sent,
should be done at this time. If any errors occur, they should be returned;
otherwise, return 0 to signal success.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6434s2.html

The close function is called for the last close() call, which is called from user
space. Any running urbs should be shut down, and any device-specific
commands that are needed should be sent now.

The write function is called exactly like the tty layer write function is called. The
data passed to the function needs to be sent to the specified port. The number
of bytes sent to the device should be returned. Remember, the device does not
have to send all of the data that the user wants it to; a short write can happen,
as long as the driver notifies user space that this has happened. This allows the
driver logic to be much simpler. If an error happens, it should be returned as a
negative number.

The write_room and chars_in_buffer functions are closely related. The
write_room function is called by the tty layer to ask how many bytes the driver
can accept to be written out at this time. The chars_in_buffer function is called
to find out the number of bytes still left to be sent to the device.

The ioctl function is called with a wide range of tty ioctl values. If the driver
cannot handle the specific value, -ENOIOCTLCMD should be returned. This will
allow the tty layer to try to provide a default function. Some of the more
common values asked for by user space are documented in the tty driver
article previously mentioned.

The set_termios function is called to set terminal settings for a specific port.
This includes baud rate, flow control, data bits and other line settings. The
break_ctl function is called to set the BREAK value for the port. A state of -1
means that the BREAK status should be turned on, and a status of 0 means it
should be turned off. The throttle and unthrottle functions are used to stop and
resume data being received from the serial port.

urb Callback Function Pointers

The read_int_callback, read_bulk_callback and write_bulk_callback function
pointers are all used by the USB serial core to set up the initial callbacks for
these kinds of USB endpoints. If the driver does not specify the read or write
bulk callback functions, the generic callbacks are used. There is no generic read
interrupt callback function, so if your device has an interrupt endpoint, you
must provide this callback.

The operation of the generic read bulk callback adds the data received by the
USB urb to the port's tty buffer, to be sent to user space when read() is called. It
then resubmits the urb to the device. If your device does not need to interpret
the data received in any way, I recommend using this function instead of
writing a new one. The generic bulk write callback is much smaller and only

wakes up the tty layer (in case it was sleeping, waiting for data to be
transmitted to the device).

Conclusion

In this article we have explained how to register and unregister a USB serial
driver, as well as the basics of the main usb_serial_driver_type structure that all
USB serial drivers must provide. Next time, we will go into the specifics of how
the USB serial driver layer works and provide an example driver.

Acknowledgements

I would like to thank all of the different programmers who have helped to
create the USB serial layer over the years. Special thanks to Peter Berger and Al
Borchers for their loadable module code offered back in July 2000, which is still
in place today.

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Linux USB Input Subsystem, Part I

Brad Hards

Issue #106, February 2003

As the USB input subsystem spreads further with each kernel release, it's time
to understand what it's doing for your devices.

The Linux USB input subsystem is a single, harmonized way to manage all input
devices. This is a relatively new approach for Linux, with the system being partly
incorporated in kernel version 2.4 and fully integrated in the 2.5 development
series.

This article covers four basic areas: a description of what the input subsystem
does, a short historical perspective on development, a description of how the
input subsystem is implemented in the kernel and an overview of the user-
space API for the input subsystem and how you can use it in your programs.
The first three areas are discussed in this article. The user-space API, the final
topic, will be discussed in Part II of this article.

What Is the Input Subsystem?

The input subsystem is the part of the Linux kernel that manages the various
input devices (such as keyboards, mice, joysticks, tablets and a wide range of
other devices) that a user uses to interact with the kernel, command line and
graphical user interface. This subsystem is included in the kernel because these
devices usually are accessed through special hardware interfaces (such as serial
ports, PS/2 ports, Apple Desktop Bus and the Universal Serial Bus), which are
protected and managed by the kernel. The kernel then exposes the user input
in a consistent, device-independent way to user space through a range of
defined APIs.

How We Got Here

The Linux input subsystem is primarily the work of Vojtech Pavlik, who saw the
need for a flexible input system from his early work on joystick support for

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linux and his later work on supporting USB. The first integration for the input
subsystem replaced existing joystick and USB drivers in the 2.3 development
kernel series. This support carried over to version 2.4, and input support in the
2.4 series is basically limited to joysticks and USB input devices.

The 2.5 development kernel series fully integrates the input subsystem. This
tutorial is based on the full integration, which will be the input API for the 2.6
stable kernel. Although some differences exist in the user-space APIs between
2.4 and 2.5 kernels at the time of this writing, there is ongoing work to
harmonize them—mainly by updating the 2.4 kernel.

Under the Hood—Understanding the Kernel Internals

The three elements of the input subsystem are the input core, drivers and
event handlers. The relationship between them is shown in Figure 1. Note that
while the normal path is from low-level hardware to drivers, drivers to input
core, input core to handler and handler to user space, there usually is a return
path as well. This return path allows for such things as setting the LEDs on a
keyboard and providing motion commands to force feedback joysticks. Both
directions use the same event definition, with different type identifiers.

Figure 1. The Relationship between the Elements of the Input Subsystem

The interaction between various elements is through events, which are
implemented as structures (see Listing 1). The first field (time) is a simple
timestamp, while the other fields are more interesting. The type field shows the
generic type of event being reported, for example, a key press or button press,
relative motion (like moving a mouse) or absolute motion (like moving a
joystick). The code field tells which of the various buttons or axes are being
manipulated, while the value field tells you what the state or motion is. For
example, if the type is a key or button, code tells you which key or button it is,
and value tells you if the button has been pressed or released. Similarly, if type
is a relative axis, then code tells you which axis, and value tells you how much
motion you have and the direction of that motion on that axis. If you move a

https://secure2.linuxjournal.com/ljarchive/LJ/106/6396f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6396f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6396f1.large.jpg

mouse in a diagonal direction, while simultaneously moving the scroll wheel,
you will get three relative events per update: one for motion in the vertical
direction (Y-axis), one for motion in the horizontal direction (X-axis) and one for
motion of the wheel.

Listing 1. event-dev-struct.txt

Event handlers provide the interface to user space, converting the standard
event format into the format required by a particular API. Handlers usually take
care of the device nodes (/dev entries) too. The most common handler is the
keyboard handler, which is the “standard input” that most programmers
(especially C programmers) are familiar with.

Drivers usually interface with low-level hardware, such as USB, PCI memory or
I/O regions, or serial port I/O regions. They convert the low-level hardware
version of the user input into the standard event format before sending it to
the input core. The input core uses a standard kernel plugin design, with
input_register_device() used to add each device and input_unregister_device()
used to remove it. The argument to these calls is the input_dev structure, which
is shown in Listing 1. Although this structure looks quite large, most of the
entries are provided to allow a driver to specify the capabilities of the device,
such as which event types and codes may be sent or received by the device.

In addition to managing drivers and handlers, the input core also exports a
useful /proc filesystem interface, which can be used to see what devices and
handlers are currently active. Here is a typical example from /proc/bus/input/
devices showing a USB mouse:

I: Bus=0003 Vendor=046d Product=c002 Version=0120
N: Name="Logitech USB-PS/2 Mouse M-BA47"
P: Phys=usb-00:01.2-2.2/input0
H: Handlers=mouse0 event2
B: EV=7
B: KEY=f0000 0 0 0 0 0 0 0 0
B: REL=103

The I: line is the identity information—showing bus type 3 (which is USB) and
the vendor, product and version information from the USB descriptors in the
mouse. The N: line shows the name, which in this case is a string provided by
the USB descriptors. The P: line shows the physical device information; here, it's
structure information comprised of the PCI address for the USB controller, the
USB tree and the input interface. The input0 part indicates this is the first
logical input device for the physical device. Some devices, such as multimedia
keyboards, can map part of the physical device to one logical input device and
map another part to a second logical input device. The H: line shows the
handler drivers associated with this device; we'll discuss this in more detail later
in the article. The various B: lines show the bitfields that identify the devices'

https://secure2.linuxjournal.com/ljarchive/LJ/106/6396l1.html

capabilities, in this case some keys for the buttons and relative axes for the ball
and the scroll wheel.

Listing 2. register.c

This /proc interface is a useful way to test some simple drivers. Let's consider
the example of a driver that registers on init and unregisters on removal, as
shown in Listing 2. This does some preliminary initialization using
init_input_dev(). It sets up the name, physical and identification descriptors, and
then sets up the bit arrays to indicate that the device is capable of providing
one type of event (EV_KEY indicating buttons and keys) with two possible codes
(KEY_A and KEY_B, indicating the key labels). The initialization routine then
registers the device with the input core. If you add this code to the kernel (using
modprobe), you can see the new device has been added to /proc/bus/input/
devices, as shown below:

I: Bus=0019 Vendor=0001 Product=0001 Version=0100
N: Name="Example 1 device"
P: Phys=A/Fake/Path
H: Handlers=kbd event3
B: EV=3
B: KEY=10000 40000000

If we actually want to send events from our device driver to the input core, we
need to call input_event or one of the convenience wrappers, such as
input_report_key or input_report_abs, provided in <linux/input.h>. An example
of code that does this is shown in Listing 3. This example is basically the same
setup as the previous one, except that we add a timer that calls ex2_timeout().
This new routine sends four presses of KEY_A and four presses of KEY_B. Note
that 16 key press events are created in total, because a separate event is
created for each press and each release. These events are passed to the input
core and, in turn, to the keyboard handler, which will cause the pattern
“aaaabbbb” or “AAAABBBB”, depending on the Shift key selection, to be
transmitted to the console or command line. The timer is then set up to run
four seconds later, looping infinitely. The four-second delay is intended to give
you enough time to remove the module when you have seen enough of the
pattern. If you reduce the delay, make sure you have another way of accessing
the system, such as an SSH connection. Also note the call to the input_sync
function. This function is used to inform the event handler (in this case, the
keyboard handler) that the device has transmitted an internally consistent set
of data. The handler may choose to buffer events until input_sync is called.

Listing 3. aaaabbbb.c

Let's look at one final example of a driver, this time showing how relative
information is provided, shown in Listing 4. This example is a driver that
emulates a mouse. The initial setup configures the device to have two relative

https://secure2.linuxjournal.com/ljarchive/LJ/106/6396l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6396l3.html

axes (REL_X and REL_Y) and one key (BTN_LEFT). As in the previous example, we
use a timer to run ex3_timeout. This timer then calls input_report_rel to provide
small relative motion (five unit steps—the relative movement is the third
argument to the function) consisting of 30 steps right, 30 steps down, 30 steps
left and 30 steps up, so the cursor is moved in a square pattern. To provide the
illusion of movement, the timeout is only 20 milliseconds. Again, note the call to
input_sync, which is used to ensure that input handlers only process events
that make up a consistent set. This specification wasn't strictly necessary in our
previous example. But, it is definitely required to convey information like
relative movement to the input core, because more than one axis may be
required to represent movement. If you were moving diagonally, you would do
something like:

...
input_report_rel(..., REL_X, ...);
input_report_rel(..., REL_Y, ...);
input_sync(...);
...

which ensures that the mouse will move diagonally and not across, then up.

Listing 4. squares.c

Handlers—Getting to User Space

In the previous section, we saw that the device drivers basically sat between the
hardware and the input core, translating hardware events, usually interrupts,
into input events. To make use of those input events, we use handlers, which
provide a user-space interface.

The input subsystem includes most of the handlers you'll likely need: a
keyboard handler to provide a console, a mouse handler for applications like
the X Window System, a joystick handler for games and also a touchscreen
handler. There is also a general-purpose handler called the event handler,
which basically provides input events to user space. This means you almost
never need to write a handler in the kernel, because you can do the same thing
with the event handler and equivalent code in user space. This API discussion is
covered in the second part of this article.

Acknowledgements

I'd like to thank Greg Kroah-Hartman and Vojtech Pavlik for their assistance
with this article.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/106/6396l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6396s1.html

email: bhards@bigpond.net.au

Brad Hards is the technical director for Sigma Bravo, a small professional
services company in Canberra. In addition to Linux, his technical focus includes
aircraft system integration and certification, GPS and electronic warfare.
Comments on this article can be sent to bradh@frogmouth.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bhards@bigpond.net.au
mailto:bradh@frogmouth.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Choosing Tools

Reuven M. Lerner

Issue #106, February 2003

The pros and cons of four web development tools: mod_perl/Mason, J2EE, Zope
and OpenACS.

If someone asked you to name the best car on the market, you'd probably tell
them the answer depends on who will use the car. After all, a family of eight
living in Manhattan probably needs a different type of vehicle from a single
hacker living in rural North Dakota. The same is true for programming
languages and development toolkits. Each has its place and is appropriate for
solving different sorts of problems.

Although this might seem obvious, many programmers believe the language or
toolkit they use is so good it should be used to solve all problems, all of the
time. As the old saying goes, if your only tool is a hammer, every problem looks
like a nail. No programming language is the best fit for all problems, which is
why experienced programmers know and use a variety of languages and
constantly are learning new ones.

Until only a few years ago, programmers were largely concerned with
optimizing their programs for speed and memory usage. After all, processors
were relatively slow, and RAM was fairly expensive, so any program that didn't
try to squeeze the most out of the hardware was seen as bloatware.

Today, however, we are blessed with cheap, fast computers and cheap,
plentiful RAM. This means that software engineers can and should use
languages that encourage rapid development and long-term program
maintenance. I'm not against optimizing programs for speed or memory usage,
but they are less important than creating stable, maintainable software quickly
and easily.

About two years ago, I decided I would devote a long series of columns to four
basic web development technologies: mod_perl/Mason, J2EE, Zope and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

OpenACS. These technologies are not only interesting and useful but thought-
provoking as well, providing new perspectives and ideas for web developers.
And although occasional arguments arise among these communities about
which product is superior, the fact is that each tries to solve a slightly different
type of problem.

This month, we take some time to summarize the ideas and frameworks that
we've explored over the last few years. I don't expect that everyone reading my
column will jump to use all of the technologies I name here; however, I do hope
to provide even the most die-hard aficionados with some food for thought.

mod_perl/Mason

Apache is deservedly one of the poster children of the Open Source movement.
It is reliable, highly configurable, well documented, stable and extensible. You
can do amazing things with Apache and can customize it in any number of ways
to fit your needs. If you are writing a web application that must execute as
quickly as possible, you can write a new module in C that seamlessly hooks into
Apache.

Although C programs execute quickly and Apache libraries (now known as the
Apache Portable Runtime) provide a great deal of useful infrastructure and
support for module authors, development in C is slower and more prone to
bugs than working with a high-level language such as Perl or Python. So it
shouldn't come as any surprise that there are Apache modules that embed
these languages inside of the Apache server. mod_perl allows you to write
Apache modules in Perl, rather than C, giving you nearly unlimited control over
your server with all of the speed and flexibility of Perl.

And indeed, mod_perl comes to mind whenever someone asks me to create a
high-performance web application, particularly one that involves text
processing or a relational database. I could write the module in C, but why
bother? There are times when it makes sense to code in C, but I've generally
found mod_perl to be fast enough for even high-powered applications.

Of course, the wonder of mod_perl diminishes somewhat when graphic
designers enter the scene. Designers have no interest in modifying program
code whenever they want to change the style (or content) on a given page, and
giving them access to the source code of Perl modules is asking for trouble.
Thus, dozens of different templating systems are available, each of which
allows you to mix Perl and HTML in a slightly different way. One of the most
popular is Mason, which has been used on a large number of heavy-duty
publishing sites for years.

Mason is indeed a wonderful tool, and it provides an excellent trade-off
between rapid development (thanks to Perl), easy maintenance (thanks to
Mason) and fast execution (thanks to mod_perl). The Mason e-mail list is a
source of useful information and support, and the package maintainers have
done an admirable job of improving it steadily over time. Configuring, using
and debugging modern versions of Mason make the versions that I first used
several years ago appear primitive in comparison.

At the same time, Mason is an infrastructure and framework for creating your
own applications. True, you easily can use Apache::Session to generate cookies
and associate users with a unique ID, but anything having to do with user
registration, groups and permissions, let alone full-fledged applications, are
your responsibility to implement. For some projects, this is just fine, because it
gives you the flexibility you may need. But the fifth time you find yourself
creating a system for creating and managing users, groups and permissions,
you may decide you need something with a bit more infrastructure.

Java and J2EE

Sun has been pushing Java as a server-side solution for several years now, and
J2EE (Java 2, Enterprise Edition) is the umbrella for a variety of technologies that
are meant to help developers create such solutions. Servlets are classes that
execute code on a server; JavaServer Pages (JSPs) are Java/HTML templates that
are compiled into servlets on the fly. JDBC allows you to access the database,
and Enterprise JavaBeans provide you with transactions and automatic
relational-to-object mapping. Entering the world of Java requires learning a
huge number of acronyms and technologies, as well as learning the various
versions for different standards.

I've been working with Java at various times since it was first released, and on
nearly every occasion, I find myself wanting to get excited about it but being
unable to do so. Java isn't bad, per se, and the different technologies it brings to
the table are all rather impressive. Servlets are easy to write; JSPs (and
especially the custom tags you can create for JSPs) are a mature and impressive
templating system, and JDBC provides everything you would ever want in a
database interface. And although EJB is undoubtedly overkill for most projects,
it is extremely useful for the big enterprise development groups that Sun is
targeting. In addition, multiple implementations, including fine open-source
application servers and tools, are impressive and encouraging.

Indeed, Java seems to be the “big company” of the web development world. It
gets things done reliably; it has an enormous array of talent at its disposal and
follows a huge number of standards; oodles of development tools are available,
and a lot of people are using Java. But the overhead associated with Java
projects is too large for my liking. Simply learning which version of which

standard goes with which version of which Jakarta subproject can take a fairly
long time. Just as it's typically more fun to work at a small company than a large
one, I find it more interesting to program in Perl or Python than in Java.

Moreover, J2EE suffers from problems similar to those I described with
mod_perl and Mason, namely the fact that it's purely infrastructure, without
any attention paid to built-in applications. Developers can create amazing
things but must reinvent the wheel for each project.

Perhaps my favorite part of the Java world is the attention to maintainable and
reliable software. A fair number of testing and development tools, such as Ant,
Cactus, JUnit and log4j make it possible (and even relatively straightforward) for
programmers to create and manage comprehensive testing of software before
it is released.

So, is Java a good choice for web development? I would argue that the larger
your project, the more seriously you should consider Java. But for the typical
basic web application that small shops work on, the overhead associated with
development is too great to ignore.

Zope

Zope is clear proof that open-source software does more than imitate its
proprietary competition. Zope combines an object database with a
multiprotocol server, hooking them together with a rich set of objects and a
slick web-based management interface. Zope is innovative, clever, a pleasure to
work with and one of the rare open-source projects designed with end users,
not just hackers, in mind. Graphic designers love to hear that they can revert to
any previous version of a document by using the undo feature in the web-
based management interface.

Zope has a number of programming interfaces, each of which trades off
simplicity for power. You can create simple DTML templates and Python scripts,
use the fascinating ZPT templates that completely separate programs from the
display logic, or you can go all the way and create a new Zope product. Zope
products are where the real power is, and because each product is a class, you
can create multiple instances of your product at different URLs. Because
objects inherit via the URL hierarchy (acquisition) in addition to their native
object hierarchy, the permissions, behavior or look and feel of a product
instance can vary according to its URL.

So far, it sounds like Zope is the best thing that happened to the Web since
HTTP. And indeed, the growing number of Zope hackers means a large number
of products are available for free download, as well as a growing number of
commercial products that use Zope as their underlying infrastructure.

However, Zope has a few problems, the first and biggest one being that the
learning curve can be rather steep. Even if you're an experienced web
developer, Zope requires that you re-learn nearly all of the concepts from
scratch, changing almost all of the habits you've acquired over the years. This
isn't necessarily a bad thing, as Zope implements it so well, but it can be a
surprise and a reason to be wary, simply because using Zope inevitably will
slow things down during the initial startup period.

The other issue I have with Zope is its object database. Object databases
historically have had a lot of problems, and ZODB appears to be bucking that
trend nicely. At the same time, relational databases are still pretty standard,
and people expect (and often need) to work with them. In theory, this isn't a
problem. Zope's built-in ZSQL methods allow you to do fascinating things with
relational database queries without thinking very hard. The problem then is
that your data is split across two different locations: ZODB and your relational
database. I like to keep all of my data in one central location, which means this
split can frustrate me somewhat.

There is also the issue of speed. Zope's sophisticated permissions and
acquisition mechanism is probably faster than you or I could implement on our
own, but it still can be relatively sluggish. The official Zope solution for this
problem is ZEO (Zope Enterprise Objects), which allows multiple Zope servers
to access a single object database. This apparently scales to one million hits per
day, which is more than adequate for most of the sites I work on. But
exceptionally large sites may need to worry about how quickly Zope operates
or alternatively, consider investing in some high-end hardware for the central
ZODB server.

Finally, Zope products tend to be relatively independent. The good news is that
this allows developers to work in parallel, without slowing each other down.
The bad news is that things are not as unified as they could be, with repeated
functionality and a lack of coordination. This may be inevitable in an open-
source project of this magnitude, but it can be frustrating at times.

Over the last year or two, Zope Corporation has been pushing the use of Zope
for content management, rather than for application development. Of course,
any decent content management system needs to be modified and
reprogrammed for the needs of the customer, so the difference isn't that
pronounced. Although Zope is not the only open-source content management
system on the market, it is undoubtedly one of the most sophisticated, as well
as one of the most mature.

In my own work, I pitch Zope to clients whose projects will involve a fair amount
of tricky development, on those that require a relatively easy to use interface or

those that require content management. I continue to be impressed by it and
look forward to working with Zope quite a bit in the years to come.

OpenACS

OpenACS began as a sophisticated data model for community web sites, along
with a large number of web/database templates written in Tcl. Over time, it has
grown into a much larger project with a number of facets: independent
packages that can upgrade both programs and the data model, the ability to
work seamlessly with either Oracle or PostgreSQL and a sophisticated
templating system that separates programs from the HTML output. And,
OpenACS comes with a huge number of prebuilt applications that do about
everything you would want for a community web site, from weblogs to fora and
FAQs to an ecommerce store. With nothing more than your web browser, you
can create a site in very little time.

And indeed, I find myself recommending OpenACS again and again to
nonprofits that want to create on-line communities, reach out to their
constituents, conduct discussions among the members or publicize information
easily, without needing to know much in the way of technology.

That said, OpenACS has a number of issues. First and foremost is the learning
curve. Zope's learning curve is difficult because there are so many technologies
to understand. OpenACS has a much simpler model, but it stores absolutely
everything in a relational database. This means the data is all in one place, but
relational databases are notoriously bad at dealing with hierarchies, and all of
the clever OpenACS developers in the world cannot mask that.

Thus, learning to work with OpenACS requires that you learn how to implement
a simple object inheritance system and the extensive API that allows you to do
it. If you haven't ever written stored procedures or worked with databases
containing dozens or hundreds of tables, then you may be overwhelmed by the
knowledge necessary to work with OpenACS.

OpenACS also suffers from little documentation for developers and none for
end users. OpenACS is admittedly a complex system that can be difficult to
describe to nontechnical people, but it can be maddening to find nothing to
help with that. To their credit, the main openacs.org site was recently
remodeled and rewritten shortly before I wrote this article and seems to have
made some positive headway in this direction.

Finally, I find it somewhat ironic that OpenACS has become increasingly
sluggish over time. Granted, this is because the latest version (4.x, as of this
writing) is far more clever about users, groups and permissions than its
predecessors, and checking these things with each HTTP request takes time. In

http://openacs.org

addition, the developers know many optimizations still can be made, such that
each request doesn't require quite so many database queries.

Conclusion

Several days before I wrote this article, a new report appeared on the Web
describing how Yahoo has settled on PHP as a web programming environment.
I personally prefer to work in other languages and wouldn't relish the idea of
rewriting all of Yahoo in a new language. But for Yahoo's particular needs, it
seems like PHP is indeed a good choice. I give them credit for considering all of
the options, weighing the pluses and minuses and coming to a conclusion that
fit their needs.

As I said at the beginning of this article, I am a firm believer in finding a
technology that meets the needs of the problem at hand. As a developer, this
means I'm constantly forced to learn new languages, technologies and
techniques. At the same time, this means my clients can get a solution that's
appropriate for their problems, and I gain broader skills and depth as a
software engineer.

The fact that these systems are available free of charge via the Internet means
that the only thing stopping you from trying them is time and some effort. I
strongly encourage you to find the time to work with them; you and the people
you work with will undoubtedly enjoy the results.

Resources

email: reuven@lerner.co.il

Reuven M. Lerner is a consultant specializing in web/database applications and
open-source software. His book, Core Perl, was published in January 2002 by
Prentice Hall. Reuven lives in Modi'in, Israel, with his wife and daughter.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6431s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Charting the Enterprise

Marcel Gagné

Issue #106, February 2003

These two open-source project management tools can help you track your
progress on any undertaking.

There is it, François, on page 509 of the Collins dictionary. Enterprise (the focus
of this month's issue) is a word that comes from the French word entreprise.
You see, mon ami, it is as I told you—a project or undertaking that requires
boldness or effort. These days, of course, we often refer to an enterprise as a
large-scale business organization. Nevertheless, the definition still stands.

People take on enterprises (or projects, if you will) every day. The success of
these enterprises often is tied closely with how the project is managed, how
carefully it is planned and how diligently the progress is tracked.

Mon Dieu, François! Why did you not tell me it was so late? Our guests are
already here. Bonjour mes amis, and welcome to Chez Marcel, home of fine
Linux fare and devastatingly good wine. François! Bring up the 1996 South
Australia Coonawarra Shiraz immédiatement!

As I was telling François, mes amis, the focus of today's menu deals with
enterprise, the taking on of bold, new projects. Aside from the obvious project
management aspects of beginning any enterprise, there seems to be a great
deal of excitement when it comes to charting the status of any large project.
This usually is done with Gantt charts, which were developed in 1917 by Henry
L. Gantt. The familiar horizontal bar chart was developed as a production
control tool to provide a quick visual means of determining where and how a
project was going, thereby simplifying project management and tracking.

Here's how it works. A Gantt chart's horizontal axis represents the time for the
project. This can be broken up into days, weeks or whatever time period makes
sense. After all, mes amis, some projects can last an awfully long time. The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

vertical axis lists tasks that make up the project. For instance, I have been
restocking the wine cellar here at Chez Marcel. My task list involves an
inventory (François), some amount of shelf reorganization (François), quality
control and tasting (Chef Marcel), placing the orders for more wine (François
and Chef Marcel), delivery (Henri of Henri's Fine Wines) and finally, restocking
(François).

Speaking of François, our esteemed waiter has returned. François, please pour
for our guests. You will love this Coonawarra Shiraz, mes amis. In addition to
the traditional spiciness of the Shiraz, notice the chocolate in its bouquet,
perhaps even a little mint, non? And the taste...but I digress. I was talking about
Gantt charts.

Tasks are listed with horizontal bars of varying lengths (and color perhaps) to
represent the amount of time spent on the specific task. At any point in the
cycle, you can draw a vertical line from the top of the chart (more or less) to
create a report of where the project stands. Simple, non?

Simple is the idea behind the Graphical UI Gantt Chart Generator (originally by
Jason R. Govig and Seth Goldstein, now maintained by Glen Stewart). This web-
based system for generating Gantt charts is simply a collection of CGI scripts. It
is perfect if you are looking for something that allows for easy, network-
available charting.

It requires Apache and a couple of Perl modules: CGI.pm and Date::Manip.pm.
The easiest way to install these Perl modules is at the command line using
CPAN:

perl -MCPAN -e "install Date::Manip"
perl -MCPAN -e "install CGI"

I should tell you that you need to do this as root. If you have never run a Perl
CPAN install before, you will be asked a number of setup questions. This only
happens once, mes amis--other than that, it is a very smooth process. To use
the package, point your web browser to the appropriate URL. On my system, it
looked something like this: http://webserver/gantt/.

The source for the Gantt chart package is available at associate.com/gantt. To
start, extract the source into your web server's document root:

tar -xzvf gantt-1.0.tar.gz
mv gantt-1.0 gantt

Notice that I immediately renamed the directory to something easier. This can
be anything you like. Have a look at the directories under the distribution
directory, specifically the one called users. This entire directory must be

http://associate.com/gantt

writable by whatever user you have Apache running under (on my system, the
user is www). Look for the user and group in your httpd.conf file.

Some modifications are necessary for two files in particular. The first is
variables.pl. The lines to change represent your own site configuration,
including the document root (as discussed above), the URL to the chart
generator, the admin's name and the admin's e-mail address:

full path to site on server
$docroot = '/usr/local/apache/htdocs/gantt/';
URL of site
$wwwroot = 'webserver.yourdomain.dom/gantt/';
Name of site administrator
$admin = '
Email of site administrator
$adminEmail = 'your_email@yourdomain.dom';

You'll also need to make one small modification to the dbhelp.pl file, providing
it with the path to variables.pl:

Edit this to point to the location of your
variables.pl file
require \
'/usr/local/apache/htdocs/gantt/variables.pl';

Finally, your Apache server's httpd.conf needs a small edit. To allow CGI scripts
to execute from the gantt directory (which lives under document root), you
need something akin to the following paragraph:

<Directory "/usr/local/apache/htdocs/gantt">
 Options ExecCGI
</Directory>

When you restart your web server (apachectl graceful), you'll be ready to roll.

To use the Gantt chart generator, enter a name into the login field—the form
actually asks for an e-mail address, but any unique name will do. If this is the
first time through, you'll be presented with a dialog form to enter your name
and contact information. After you click the Submit button, you can describe
your project and identify the members of your project team.

Next, you'll list the tasks that will bring about the successful completion of your
new enterprise. Each line is color-coded and new tasks can be added at any
time. With each update of the page, enter the starting and ending week and the
individual responsible. When you finally click Submit, the chart is generated
automatically (Figure 1).

https://secure2.linuxjournal.com/ljarchive/LJ/106/6430f1.large.jpg

Figure 1. Simple Web Creation of Gantt Charts

Another project well worth your consideration is MrProject
(mrproject.codefactory.se). Part of GNOME Office, this is a desktop-centric
application. Consequently, you may not have to do anything if you installed
GNOME as your desktop (or even if you did not). MrProject can be found on the
distribution CDs of the latest Mandrake, Red Hat, SuSE and others.

When you start MrProject for the first time, by typing mrproject &, you open up
a blank project. You even can open multiple projects by clicking on New. Notice
the buttons on the left-hand side: Resources, Gantt Chart and Tasks. Switching
from one view to the other is as simple as clicking the buttons.

When you start your new project, click File on the menubar and select Project
Properties. Enter the name of the project, its start date (MrProject has a friendly
drop-down calendar to select from), the manager's name and the organization
information. Click Close, and save the project under a name that makes sense
to you.

Your next step might be to enter the resources you have at your disposal for
the duration of the project. You do this by switching to the Resources display
and clicking Insert. A default resource record will be added to the list that you
can then right-click and edit. A resource might be materials or a person's time.
You also can assign cost here.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6430f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6430f1.large.jpg
http://mrproject.codefactory.se

Under tasks, select Tasks from the sidebar and click Insert once again. As with
resources, tasks are generic and need to be edited. These tasks can be
described in any way you wish and assigned to one of your resources. Don't
worry about the order in which you enter these tasks. You can change the
order in the list by selecting a task, then clicking Move up or Move down. The
amount of time allocated to a task is entered in days, but you can enter
portions of days. The percentage of task completion is also entered here.

Figure 2. MrProject's Gantt View

At any point, you can switch to the Gantt view (Figure 2). What's cool is that you
can modify the time on the tasks by clicking on the horizontal bar and simply
dragging it. (I think I need to allocate more time under “Wine tasting and quality
control”). Task dependencies also can be added at any time. After all, some
tasks require the completion of other tasks before they can be started.

These two are but a few of the packages designed to handle project
management, tracking and charting. If you want to see at some of the other
available offerings out there, I would highly recommend a visit to the “Call
Center, Bug Tracking and Project Management Tools for Linux” page
(www.linas.org/linux/pm.html).

Scroll down to the Project Management as well as the Schedulers, Planners and
Gantt Chart Tools section for additional packages to explore. Offerings come
from both the freeware and commercial software worlds, and each package
comes with a brief description along with links to the package's home page.

Looking at the clock, mes amis, it seems as though closing time is nearly here.
Perhaps we can take on some enterprise to extend the days by a few hours.
With the skills of all the open-source programmers of the Linux world, certainly

https://secure2.linuxjournal.com/ljarchive/LJ/106/6430f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6430f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6430f2.large.jpg
http://www.linas.org/linux/pm.html

anything is possible. It is a bold idea, but is that not the meaning of enterprise?
At the very least, we shall be able to chart our progress, non?

Speaking of progress, I see your glasses are nearly empty. Let's ask François to
rectify this right away. Until next month mes amis, let us all drink to one
another's health. A votre santé! Bon appétit!

Resources

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley (and is currently at work on his next book). He can be reached via e-mail
at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6430s1.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

An Introduction to FreeS/WAN, Part II

Mick Bauer

Issue #106, February 2003

Connect two private LANs securely with a FreeS/WAN tunnel that runs on your
existing firewall systems.

Last month I introduced FreeS/WAN, Linux's implementation of the IPSec
tunneling protocol for secure virtual private networks (VPNs). For my sample
configuration, I used the common scenario of remote access (RA) VPN. RA
VPNs, you'll recall, are used when each remote user is expected to connect to
the home network using separate connections, resulting in a one-tunnel-per-
user setup.

But what happens when some or all of your remote users are connected to the
same local area network (LAN)? I mentioned this type of site-to-site VPN
scenario last month, but I didn't explain how to set up one. Building site-to-site
VPNs with FreeS/WAN, therefore, is our focus this month.

Architecture: Site-to-Site VPNs

Before we dive into FreeS/WAN configurations, let's take a quick look at
architectural considerations. Figure 1 shows a typical site-to-site VPN network
layout.

Figure 1. Simple Site-to-Site VPN Design

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f1.large.jpg

In Figure 1, each site's firewall acts as a tunnel endpoint. There are several good
reasons to use a firewall as a VPN endpoint:

1. Convenience: most firewall platforms support IPSec or some other VPN
protocol, eliminating the expense and time required to configure and
administer separate VPN servers.

2. Security: a firewall acting as a VPN endpoint can regulate traffic entering
and leaving VPN tunnels with excellent granularity and accuracy.

3. Simplicity: if your firewall and IPSec software were designed to run
together on the same host, it can be much easier to get your tunnels
working and to troubleshoot them when they don't.

However, there are several reasons why this type of setup may not be feasible
or desirable:

1. Non-interoperability: if you aren't in control of both sides of the VPN
tunnel (e.g., if you're connecting to a vendor's or partner's network), the
remote firewall's VPN implementation may not be compatible with your
firewall's.

2. Performance: if your firewall is already fully or over-subscribed doing its
normal duties, it may not be able to support the added overhead of VPN
authentication and encryption.

If, for these or other reasons, you can't use your firewall as a VPN endpoint, you
may prefer to use an architecture such as the one in Figure 2.

Figure 2. Alternative Site-to-Site VPN Design

In Figure 2, each VPN endpoint is a dedicated computer (in Figure 2 both
endpoints are set up this way, but you can also mix and match, say, a combined
firewall/VPN endpoint on one end and a split on the other). It may seem
reckless to put any device in parallel with your firewall. Couldn't such a device
be used as a back door?

Indeed, it could—unless the VPN server is carefully configured to accept only
VPN traffic and its VPN software is carefully configured to accept VPN

https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f2.large.jpg

connections from only approved endpoints, i.e., using strong authentication
mechanisms.

Let's jump right into FreeS/WAN and see how to set up a site-to-site VPN with
endpoints secure enough to reside either on firewalls or on standalone hosts.

An Example Scenario

Figure 3 shows a site-to-site VPN scenario that's functionally equivalent to the
one in Figure 1. That is, it also has the same host at each site serving as a
combined Linux firewall and FreeS/WAN IPSec server. Figure 3, however, offers
a bit more detail. First, you can see that each network is connected to the
Internet via a local router. Second, Figure 3 shows the IP addresses needed for
tunnel definitions (we'll see which IPs get used where shortly).

Figure 3. Our Example Site-to-Site VPN Scenario

In this scenario, we need to set up a VPN tunnel between two sites' firewalls'
respective “external” interfaces. When a user on one site's LAN wishes to
communicate with a host on the other LAN, the firewall sends those packets
through the tunnel. Reply packets take the same path back through the tunnel.
Hosts on either side may initiate connections through the tunnel.

The firewalls restrict what sort of data may enter and leave the tunnel at either
side. On a combined iptables/FreeS/WAN server, these firewall rules can be the
same, as though no tunnel were being used, even if network address
translation (NAT) is involved. This point is explained later in this article.

A few important premises about this scenario should be noted. First, both
firewalls are running Linux kernel version 2.4.18. Second, both firewalls' kernels
have been patched with FreeS/WAN version 1.97 and had the user-space FreeS/
WAN tools (same version) installed as well. Third, the two networks can reach
each other without IPSec, i.e., in the clear. (We don't want them to
communicate that way, but we need to know they could; otherwise
troubleshooting VPN problems are much harder.)

https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433f3.large.jpg

Exchanging Host Keys

Another ground rule for this scenario is using RSA authentication rather than a
“shared secret”. While I don't want to completely re-explain last month's
material on host key generation and maintenance, it's important to review the
most important points.

You hopefully recall that each host running FreeS/WAN should have a unique
host key; you should not use the default key provided by the FreeS/WAN binary
package you installed. Once you've generated a new key on a given host,
however, you'll be able to use that key for as many different tunnels as that
host needs. The key remains useful for as long as the secret portion of the host
key (stored in /etc/ipsec.secrets) is kept hidden or until advances in
cryptanalysis render your host key too short. (Actually, the chances of this
occurring before FreeS/WAN itself becomes obsolete for some reason are
pretty slim.)

To generate a new host key using FreeS/WAN 1.92 or higher, enter this
command:

ipsec newhostkey --hostname my.host.fqdn \
--output /etc/ipsec.secrets --bits 2192

This generates a 2192-bit RSA key, saving both its public and private
components in /etc/ipsec.secrets. I didn't point out last month that because
these commands deal with RSA keys, longer key lengths are required than for,
say, a block cipher such as 3DES.

Do not be tempted, therefore, to use a value of 128, 196 or some other three-
figure number for newhostkey --bits. Public key mechanisms such as RSA and
DSA work differently, and their keys must be roughly ten times longer than
block- and stream-ciphers' keys. 1,096 bits is the smallest RSA key size you
should even consider; 2,192 is much safer.

To display your new public key in a format that can be directly copied and
pasted into tunnel definitions, use this command:

bash-# ipsec showhostkey --left

You can use the option --right instead if you want to print a rightrsasigkey
statement instead of a leftrsakey statement.

Remember, the output of this command may be shared safely. It contains only
the public component of your host's signing key. You may e-mail it without
encryption, post it on a web site or set it to music and sing about it at your
favorite coffee shop. This is why RSA authentication is more convenient than

shared-secret authentication, in which you must securely and covertly send the
authentication credentials (shared-secret string) to another site any time you
wish to build an IPSec tunnel. RSA authentication allows you to be sloppy
(except with /etc/ipsec.secrets, which must be kept root-readable-only at all
times); shared-secret authentication does not.

Setting Up ipsec.conf

FreeS/WAN's main configuration file, other than /etc/ipsec.secrets, is /etc/
ipsec.conf. In the interest of simplifying things, FreeS/WAN was designed in
such a way that tunnel definitions usually look the same on both endpoints of a
FreeS/WAN tunnel. Most of the example lines that follow, therefore, are the
same on both firewalls in our example scenario.

Last month I focused mainly on tunnel definitions. We'll get to them here, too.
But first, let's delve a little deeper into the config setup and conn %default
sections. Listing 1 shows a config setup for one of our firewalls (it doesn't
matter which one).

Listing 1. Basic Setup in /etc/ipsec.conf

The first parameter in Listing 1, interfaces, is crucial. It defines the interface on
which the host will listen for IPSec connections from other IPSec servers. This is
not to be confused with the interface on which the host listens for packets sent
through the tunnel. If you think of the Internet (or other untrusted network) as
the outside and the local LAN as the inside, always make sure that the
interfaces' parameter is set to your outside interface.

The two debug options, klipsdebug and plutodebug, determine how much
logging is done by FreeS/WAN's kernel-interface dæmon (KLIPS) and IKE keying
dæmon (Pluto), respectively. Both of these parameters accept the self-
explanatory magic values all and none, plus a variety of specific IPSec
attributes/events that can be logged. See the ipsec_klipsdebug(8) and
ipse_pluto(8) man pages for complete lists of these.

The parameter plutoload specifies which tunnel definitions to initialize when
FreeS/WAN starts up. The magic value %search tells Pluto to check each
subsequent tunnel definition's auto parameter to determine this (i.e., each
tunnel for which auto is set to add).

Similarly, the value plutostart tells Pluto which tunnels to try to connect to
automatically when FreeS/WAN starts. In other words, whereas plutoload
merely tells Pluto to allow other hosts to bring up specified tunnels, plutostart
tells Pluto itself to bring up specified tunnels, without waiting for their other

https://secure2.linuxjournal.com/ljarchive/LJ/106/6433l1.html

endpoints. Again, the %search value may be specified. In this case, it will match
tunnel definitions in which auto is set to start.

Listing 2. Tunnel Defaults in /etc/ipsec.conf

Listing 2 shows the subsequent conn %default section in an ipsec.conf file. The
first parameter in Listing 2, keyingtries, is set to zero, which actually translates
to no limit. This means when Pluto tries to bring up or replace a tunnel, it tries
to key it as many times as necessary. This is a reasonable setting for a site-to-
site VPN in which both hosts have persistent network connections, but it's not
for a remote-access VPN in which remote clients will be on-line only
sporadically.

disablearrivalcheck, if set to no, causes KLIPS to make sure that each packet
entering the host from an IPSec tunnel has plausible source- and destination-IP
addresses in its header. The default value is yes, which prevents these checks,
but you should set it to no unless you really know what you're doing.

Finally, authby lets you choose the default authentication method for tunnels,
which, as I said earlier, will be via RSA (rsasig) for our example scenario. And
now we arrive at our actual tunnel definition—it's displayed in Listing 3.

Listing 3. Tunnel Definition in /etc/ipsec.conf

Because this is a site-to-site scenario, FreeS/WAN's convention of server = left,
remote-access clients = right isn't meaningful. So it's completely arbitrary which
side is designated right or left. The important thing is to be consistent across
the tunnel definitions in both hosts' setups. Here, the site to the left of the
Internet (Figure 3) is left, and the site to the right of the Internet is right. That
sounds obvious, but if I were to decide to make right left and vice versa, the
tunnel would behave the same (provided I used the same configuration on
both sides).

As you can see, in Listing 3, left is set to the external (Internet-reachable,
tunnel-listening) interface's IP address. leftsubnet, however, is set to the
address of the network that receives incoming packets (i.e., leaving the tunnel).

leftnexthop is the IP address of the next hop between the firewall/IPSec host
and the Internet. And leftrsasigkey obviously is the host key of left. This line
(and the comment above it) can be obtained verbatim by running the
command ipsec showhostkey --left.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6433l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433l3.html

The right parameters are the same, but for the right side. I leave it to you to use
your powers of deduction to figure out to which hosts in Figure 3 these
parameters correspond.

Finally, we have the tunnel's auto parameter, which is set to start. When the
Pluto dæmon executes its search for instructions on what to do with tunnel
definitions at startup (as described in the section following Listing 1), this
setting tells it to initiate the tunnel defined above.

As I've been hinting, in this example scenario, the /etc/ipsec.conf files for both
firewalls and gateways are identical. Once they're set up, we can start IPSec on
each host and start tunneling. The command to do this on most distributions is:

bash-# /etc/init.d/ipsec start

If IPSec is already running, use:

bash-# /etc/init.d/ipsec restart

Once IPSec has been (re)started on both hosts, the tunnel will come up, and
each gateway will begin routing traffic addressed to the other network through
the tunnel. This routing is done automatically, based on the leftsubnet and
rightsubnet parameters defined in your tunnel definition in /etc/ipsec.conf.

Firewalls and NAT

Naturally, you'll want to restrict what sorts of things hosts from the other
network may do on your network and vice versa. I stated earlier that firewall
rules on a Linux host running FreeS/WAN aren't necessarily any different from
when they are without tunneling. This even holds true with NAT. When writing
your firewall rules on each gateway, set up FORWARD, POSTROUTING and
PREROUTING rules the same as if you weren't using IPSec—just be careful
about interfaces. If you use -i and -o parameters, don't say “eth0” if you mean
“ipsec0” (or “ipsec+” if you mean “all tunnel interfaces”). When in doubt, try to
stick to IP addresses rather than interface names in your firewall rules.

In addition, make sure that no NAT is performed on tunneled packets. IPSec
packets' headers are checksummed in the body of each packet's data field.
Rewriting the IP header (e.g., by translating source or destination IPs) violates
this message-digest, and weirdness will ensue. You can do NAT on packets as
they leave the tunnel or before they enter it, but not while they're in the
process.

Whatever else you do, you will need at least three new rules on each gateway
to allow IPSec key negotiation and tunneling. In the INPUT and OUTPUT chains,
you'll need to permit packets sent to UDP port 500, IP protocol 50 packets and

IP protocol 51 packets. The relevant rules on both gateways would look like
what is shown in Listing 4.

Listing 4. iptables Rules to Allow IPSec

Conclusion

With that, you're ready to connect your network securely and cheaply to those
of your vendors, partners and acquaintances. Good luck!

Resources

Mick Bauer (mick@visi.com) is a network security consultant for Upstream
Solutions, Inc., based in Minneapolis, Minnesota. He is the author of the
upcoming O'Reilly book Building Secure Servers with Linux, composer of the
“Network Engineering Polka” and a proud parent (of children).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/106/6433l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/6433s1.html
mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Caring Less

Doc Searls

Issue #106, February 2003

If Linus cared more about what happens outside the kernel, it might be a less
useful operating system.

On October 2002's Linux Lunacy Geek Cruise, over a hundred Linux faithful got
to hang with Linus Torvalds himself for a week. Although conversation seemed
to run to children more often than to technology (between us we have four kids
under six), Linus talked enough techno trash for me to gather that the man's
mantra consists of three short words: I don't care.

There's a lot of stuff Linus doesn't care about: anything in “user space”, other
operating systems, new noncommodity microprocessors, fights over
development methods, the whole “free vs. open” thing, etc. The list goes on
forever, as there's a vast world of technical and political stuff going on outside
the one thing he does care about: the kernel.

Linus opened his talk on the boat with this disclaimer: “I only do kernel stuff. I
did user-level stuff about ten years ago—only because without it the kernel isn't
usable. I don't know what happens outside the kernel, and I don't much care.
What happens inside the kernel I care about.”

By not caring, Linus doesn't mean he has no opinions. Like the rest of us, he
has plenty of those. Unlike the rest of us, however, he's a Major Figure whose
opinions are given a great deal of weight—even when he goes out of his way to
remove gravity by disclaiming any interest in a subject. That's why Linus made
news with a number of zero-gravity opinions he offered in his talk on the boat,
such as why he doesn't like Intel's Itanium or Apple's Mac OS X.

It's only natural to assume that strong feelings accompany strong opinions; but
this seems to be less true for Linus than it is for most people, because he often
goes out of his way to explain how little he cares about stuff that might be
interesting but also distracting. Politics is a perfect example. In that same talk

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

on the boat, he said, “To me all the politics is just amusement value. I don't
care.” And because he doesn't care, Linux is a huge success. In fact, it's getting
huger every day.

Another geek cruiser was Roland Smith, director of Global IT Operations at LSI
Logic. He explained to me how LSI Logic was gradually converting to Linux
pretty much across the board, from fancy engineering workstations to
desktops. For them, it wasn't only that Linux is cheap and useful, but that it
uncomplicates many things.

Roland's story is consistent with a shift in the direction of news about Linux that
I began to sense around the time of the cruise. The OS was suddenly being
taken seriously and not simply as a “threat” to Microsoft. It was becoming
established as a mainstream OS—perhaps the mainstream OS—and the
reasons were purely practical. Linux is cheap and easy to deploy. It's about as
simple and useful as an operating system can be. These virtues are old hat for
the Linux community, but they're new hat for many of the world's suits, who
aren't used to an OS that doesn't obsolete itself as a matter of policy.

One of the panel discussions on the boat raised the subject of obsolescence.
Linus pointed out that commercial software is based to some degree on a
model that values obsolescence. Case in point: when Windows 98 came out, Bill
Gates was asked about threats from Mac OS. Gates dismissed the question and
said the real enemy of Windows 98 was Windows 95. His goal, plainly, was to
extract fresh revenues from his entire customer base. Apple clearly has similar
plans with major new releases of Mac OS X. For two decades, customers have
taken this imperative for granted. They had no choice.

Linux lets customers choose an OS that doesn't care to obsolete itself. That
choice became much more interesting to a lot of suits last summer when
Microsoft raised its licensing rates for Windows. In a down economy, this rate
increase put customers in a much better frame of mind to entertain the Linux
alternative.

At the kernel level, Linux doesn't have a commercial agenda. Its purpose is to
be useful, period. If you can find a way to make money with it, fine. Linus and
his kernel don't care. Sure, some things do get obsoleted along the way. In his
talk, Linus explained how the 2.6 kernel will have a whole new block device
layer. But even those changes are not being made for the sake of obsoleting
anything. They're being made so the kernel will be more useful, in more ways,
for as long as possible.

The inherent practicality of the Linux kernel extends upward through the
countless choices it supports. By contrast, it's hard to imagine Microsoft or

Apple wanting to support multiple desktops or UIs by developers other than
themselves. But that's exactly what Linux does. It supports those desktops and
UIs by not caring about them.

Dave Sifry explains how it all works:

By focusing on a strong separation between kernel-
space code and user-space code, the kernel is more
stable and strong user-space projects increase
momentum. For example, by reducing the amount of
code in the kernel, projects like Samba have been able
to innovate in a decentralized manner and to create
more stable, feature-filled code. No one has to post a
patch to linux-kernel in order to get changes made to
Samba. All of the major subsystems of Linux share this
attribute—XFree86, GNOME and KDE, browsers, heck,
even glibc (although the glibc example isn't as strong
as the others). We also don't have to worry about
Linus creating hidden APIs to make OpenOffice better
than AbiWord, or Mozilla better than Opera or KDE
better than GNOME, no matter which of those Linus
personally prefers.

Not caring is the ultimate level playing field, and it tends to best support other
level paying fields built on top of it. For example, while Debian is perhaps the
least commercial of all the major Linux distributions, it has provided extremely
practical commercial “solution” building material for the likes of Lindows and
Xandros. If Debian were busy caring about those implementations, it might be a
lot less practical.

“Transparency” is another old-hat Linux virtue that's becoming a hot buzzword
in the world of suits. How long before customers demand the same absence of
opacity in their OSes as they do in their accounting systems? Hey, why care? It's
going to happen anyway.

Doc Searls is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Don't Code for Linux

Haavard Nord

Issue #106, February 2003

Better to pick the platform after you write the application.

The days of developing applications for a single platform are history. Why?
Because every platform offers at least one key benefit that cannot be attained
on any other; Windows, Linux/UNIX, Mac OS X, embedded Linux and others
each offer unique advantages. But given changing market conditions, it's
impossible to predict which platform will give you the competitive edge you
need.

Our anwser is: why pick? We feel that developers can and should leverage all
the best qualities of each platform by embracing multiplatform development.
This is true not only on the desktop, but also on the server, the network, mobile
devices and every other tool that connects us. Our increasingly mobile working
style demands portable data and portable applications to match today's
distributed networks and global organizations.

Organizations that want to compete and survive must recognize a fragmented
OS environment as a given, and they must respond by developing applications
that run quickly, cleanly and natively on the greatest number of platforms
possible. Applications written in this way take advantage of the best features
each platform has to offer, without having to be written and rewritten for every
instance. This process limits your company and represents a colossal waste of
time. Forward-looking companies already recognize that single-platform
development is destined to fail, and they have embraced a better way. Here's
why we think this report on the death of single-platform development is not
exaggerated.

Single-Platform Development Is Expensive

If you wish to develop for more than one platform, thus expanding your target
market, your costs rise dramatically. You need a full team to develop for each

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

platform. Perhaps more importantly, you need a full team to maintain and
support each platform. This represents a linear increase in cost for each
platform—an extremely inefficient way to do business.

Single-Platform Development Closes Doors

Developing applications for one platform increases your risk because you have
to choose among markets before their potential is clear. Who's to say you'll be
right? Software companies have been made or broken by this choice. In the
recent past, people said Windows (with its momentum and market dominance)
was the obvious choice—but wait! Linux has proven itself as a serious
competitor in the server space and is picking up serious momentum on the
desktop and in the embedded space. World-class consumer and enterprise
companies are embracing its power, flexibility, security and low cost. So, what
used to be an obvious platform decision isn't so obvious anymore. Do you
know when (or where) this kind of rapid transformation will happen again? I
don't.

Single-Platform Development Does Not Encourage Mobile Deployment

Perhaps most importantly, if you limit development to a single desktop or
server platform, you immediately restrict your access to the fastest-growing
software market in the world: mobile systems. If, for example, you write an
application for Microsoft Windows NT/2000, you automatically eliminate any
cost-effective way to run your application on a mobile device, because you have
to rewrite the source. Given that it's nearly essential to make applications
mobile, developing applications on a single desktop/server platform can be a
death sentence for that application even before it's finished.

The software industry has struggled for some time to develop commercially
viable strategies for multiplatform development, and its history is littered with
companies that have tried to do this, and failed. Why?

One difficulty has been a lack of complete functionality. Many toolkits deliver
only subsets of functionality on multiple platforms, not the whole set. Another
problem has been reliance on emulation or virtual machines. Both of these
impose a significant and usually unacceptable performance penalty, especially
for mobile devices that need high performance the most.

It's a well-recognized fact that differences between virtual machines lead to
implementation workarounds and tweaks, as well as increased maintenance.
This is another expense, and it makes the developers who have to do this work
miserable.

Today, though, proven ways exist to write an application once, compile and run
it anywhere. Companies who do multiplatform development create an
environment in which development innovation will once again be the order of
the day—not the exception.

Haavard Nord, cofounder and CEO of Trolltech, started his programming career
trying to find acceptable multiplatform toolkits for database development. He
now drives Trolltech's efforts in single-source, multiplatform software
development. The company's products encourage innovation by letting
developers write single-source applications that run natively on Windows,
Linux, UNIX, Mac OS X and embedded Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Various

Issue #106, February 2003

Readers sound off.

Cluetrain Station: ASA

The fact that a user-friendly distro such as Mandrake tops your poll tells me
that readers are interested in the practical uses of the OS as a day-to-day
computing platform. Could more non-tech reviews be in order? I recently went
shopping for a Linux machine. The “Dell Dude” didn't want to talk to me unless I
was willing to give some money to a guy in Redmond; however, from your
pages I contacted the nice folks at ASA Computers. Their agent Sean acted as if
I were a major buyer, and in no time I had a nice, new Linux workstation
delivered to my door.

—Michael Presley

Please Run Microsoft Ads!

In the November 2002 issue [Letters, page 6], Renato Carrara told you not to
run Microsoft ads. I present you the top five reasons to run MS ads in LJ: 1) Bill
Gates is NOT evil. 2) MS ads in LJ would be proof that we won the OS battle! We
all remember when MS ignored us, claiming that Linux had too small of a user
base to be interesting. 3) Let LJ readers, not staff, make the decision on whether
the offer is hot or not. 4) If MS pays money to LJ for bringing an ad, we, the LJ
readers, end up with a better magazine! 5) Linux is not just about having access
to source code. It is also about freedom—freedom of choice, free markets and
free competition. MS ads cannot disillusion, scare or harm us! They can only
make us stronger!

—Martin A. BoegelundBjerringbro, Denmark

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Memory Leaks No More

I just read the article about memory leak detection in the September 2002 issue
of LJ. I was surprised to see that Valgrind, which blows all three mentioned
memory checkers out of the water, was not mentioned. Valgrind
(developer.kde.org/~sewardj) is every bit as good as purify from Rational
Software, which is not available for Linux, or Insure++, which is very expensive.

—Greg Hosler

USA! USA!

It's tough getting a vanity plate done in Connecticut; we're very conservative. I
was surprised no one had taken the Linux plate, so I had it made with the new
patriotic theme that our DMV just released. I think it makes a positive
statement. Yes, Tux is helping me show it off.

—Paul Ammann

Sorry, Tim

Thanks for printing the Henson Control System article [“Controlling Creatures
with Linux”, LJ November 2002]; it came out quite well, I think. My apologies to
Tim Magill, whose name I misspelled by trusting spell checking.

—Steve Rosenbluth

We Are the World

Reading the November 2002 issue of Linux Journal, I have had a feeling about
i18n/i10n that I must share with all of you. To be clear, I must say that we
Italians were united by wars between 1861 and 1918, but we are still using our
pre-unitarian languages, or “dialects”, so I really appreciate the localization
effort. But at a global scale, actually the English language is used as a lingua
franca for the diffusion of scientific and informatics knowledge. If we eliminate

http://developer.kde.org/~sewardj

such an instrument we'll break the free transmission of ideas. I think that we
must have care of both sides of the phenomenon.

—Franco Favento de i Favento de Trieste

Game Articles, Please

Many thanks for putting so much effort into Linux Journal, but I do notice
something that seems to be missing—a gaming section.

—Matthew

We don't have space for a gaming section each month but will include
screenshots and mini-reviews of fun games as we discover them. Please send
your favorites to info@linuxjournal.com.

—Editor

Back to Brazil

I received a copy of the article “Free Software in Brazil” by Jon Hall, featured in
the September 2002 LJ, from a friend who lives in the US and who was quite
worried about some things the article mentioned regarding what you call “the
Landless Movement” in Brazil.

Although the cause of this movement may look noble, there are many things
related to this group that should have been considered before publishing that
article and stamping their flag on the magazine's cover. The group, known here
in Brazil as MST, has a radical political position, and they are responsible for
some actions that could be seen as terrorist acts, such as mass killings and
unauthorized land occupation including invading and destroying a farm that
belongs to Brazil's president, Mr. Fernado Henrique Cardoso. The group's
default way of acting is by the use of brute force and they usually threaten
people to get what they want. Everything I'm mentioning here can be easily
checked. A simple search on major Brazilian newspapers will show that the MST
isn't worth trust or being featured on a magazine such as Linux Journal. Mr. Jon
Hall, with all due respect, should try to find out better who he is supporting or
featuring.

—Bruno Trevisan

Jon “maddog” Hall replies: The group of people that I was introduced to, and
who appear in the picture, were introduced to me by Mr. Marcos Mazoni, the
President and CEO of PROCERGS. PROCERGS is the government-owned
software company that is doing a lot of the open-source programming for the

mailto:info@linuxjournal.com

state of Rio Grande do Sul. The group also showed up at the third annual
Software Livre! conference, which was sponsored in part by PROCERGS, and
attended by the Mayor of Porto Alegre and a representative from UNESCO.
There was no mention or indication that this was a “terrorist group”. However,
in light of Mr. Trevisan's letter I went back to Brazil and did some more
research, both directly and indirectly, by reading and by talking to people who I
trust and by doing a little web-scouring of my own.

In Brazil about 60% of the land is owned by 1% of the population. A lot of this
land lies idle, while millions of people are out of work and have no way to
generate money or food. Since 1984, MST has won land for approximately
250,000 families in 1,600 settlements, but there are still another 4.8 million
families without the means to support themselves. MST is building
cooperatives, building agro-industries, building and staffing day-care centers,
teaching literacy classes to 25,000 adults, helping to educate 150,000 children
in 1,200 public schools, and they are proud of their nonviolent direct action in
the form of land occupations. I have lived through quite a few other “actions” in
my lifetime. The Civil Rights movement of the 1960s and the anti-Vietnam War
movement come to mind. Both of these had their peaceful incidents and
incidents that were not so peaceful. However, to judge a whole movement and
its motives by the actions of a small minority of them is wrong. If the whole
movement of the MST is indeed bad, and if they are indeed terrorists, then I
have good company in the number of people and agencies that have been
duped by them. It appears that UNESCO, the Catholic Church, and even parts of
former President Cardoso's own judiciary and elected officials supported the
MST.

Actually, from the documentation I found, it seems that the nonpeaceful and
“terrorist” actions seems to have come from the former government of Brazil,
with the killing of many of the protesters by government forces and the lack of
action by the government in holding their killers responsible. One article
written by Mark S. Lagevin, a professor of Global Studies at Pacific Western
University, says there were 969 assassinations of rural workers and MST
activists, with only five people convicted of those crimes. Hopefully, the new
government will be more responsive.

Luiz Inacio Lula da Silva, of the Brazilian Worker's Party (PT) is now the
President of Brazil. In the past the PT has helped to support the MST in its quest
for land reform, and I hope this continues. Not relying on only newspaper
articles and web sites, I asked several of my Brazilian friends what they thought
of the MST movement. Each of them stated that while they deplore any type of
violence, the good that the MST movement generates is many times better than
the reported bad actions of a few, and that the past government had not been
responsive to more than reasonable requests for land reform. Therefore, they
supported the MST overall.

However, I was informed by a friend in São Paulo that representatives of
Microsoft were taking copies of Linux Journal to people in business and telling
them that I was not an honorable person because I was associated with the
MST group, and by default if I am not honorable, then the Open Source
movement must not be honorable. Therefore, I would like to set the record
straight as to what type of person I am. I believe in free speech, a democratic
process and freedom of choice. I believe in nonviolence and have never
physically hurt anyone in anger. I have never been in jail, never been arrested
and have received only two speeding tickets in my entire life (which I paid). I do
not believe that killing a human being for anything less than immediate threat
of life (my own or another person's) is ever justified, yet I would go to war to
protect my country and its ideals if we were attacked. I believe in equality of the
races and sexes, and I believe in honoring diversity in religion and sexual
orientation. I believe that the duty of government is to honor the will of the
majority as long as it does not violate the rights of the minority. I honor laws,
even those that I am not completely happy about, believing that it is better to
change them than to break them. I encourage people to think about what the
law means, and what it would be like if there were no laws. Finally, I have never
even been accused in court (local, state or federal) of being a monopoly,
breaking the law or knowingly harming another person's business or the
consumer by my business tactics. As for my association with the MST group,
and my picture alongside their flag, I repeat that my interest was in seeing
people who had little money and great ideals using a free and open operating
system to help their cause and better their lives. On this path I will continue to
walk. With respect to Mr. Trevisan, I have encouraged Linux Journal to publish
his letter, and this response. For those of you who are interested in the MST
movement, I offer their web site at www.mstbrazil.org or www.mst.org.br.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.mstbrazil.org
http://www.mst.org.br
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Upfront

Various

Issue #106, February 2003

What's new with the kernel and more...

diff -u: What's New in Kernel Development

Folks waiting for LVM1 to be fixed in the kernel can stop waiting. It's been
removed, after six months of sitting in an unmaintained, broken state. Joe

Thornber posted the actual patch to take it out. This seems to be part of a
general “let's get cleaned up for 2.6” push. There was talk on the mailing list of
replacing the code with LVM2, Device Mapper (DM) or even EVMS. None of
these were universally hailed as the obvious choice. DM had a lot of missing
features, while EVMS had too many available ones. There was even some talk of
trying to fix LVM1 instead of pulling it out—or at least of finding a suitable
replacement first. So far, EVMS looks like the prime candidate for 2.6, but it's
still too soon to say.

At the Ottawa Kernel Summit it was agreed that driverFS would be changing its
name, and patches have begun appearing to do exactly that. The only problem
is no one can agree on what the new name should be. Patrick Mochel wants
“kfs”, but others say that single-letter-plus-fs is getting to be a cluttered
namespace. H. Peter Anvin has suggested “kernelfs” or simply “kernfs”. About
the only thing that's known so far is the name will change.

Support has been added for the NEC PC-9800 architecture, a popular
architecture in Japan that is roughly the equivalent of the Intel-based PC in the
West. Traditionally, it has run ported versions of MS-DOS and Microsoft
Windows, although it has never been fully “IBM-compatible”. With 40-50% PC
market share in Japan, these patches open Linux up to a huge number of
people who previously may not have had access to it.

Jeff Dike's User-Mode Linux now has SMP support. Up until now, regardless of
the number of CPUs on your system, UML processes were entirely
uniprocessor. Among other things, this meant that testing SMP software

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

(particularly the kernel itself) under UML was not going to get you much. This
new advance opens the door for speedier testing of various applications that
otherwise would require many lengthy reboots, possibly accompanied by
filesystem corruption.

The ioctl interface is now deprecated. New drivers should create a filesystem-
based interface with libfs, newly included in the 2.5 tree. I/O control functions
have been condemned for years as an unmaintainable, undocumentable, ever-
growing mess, but for a long time there was no way around it. Now at last,
Linux developers can use an interface that makes sense—one that won't cause
more trouble than it's worth.

The kernel went into feature-freeze on October 31, 2002. It's much too soon to
tell if this will lead to 2.6 in a reasonable amount of time, or if events will lead
back to a period of rapid development with no end in sight. Linus Torvalds and
others have been struggling for a while to bring the kernel rev-time into a
reasonably short time frame, but the time between stable series is still
measured in years. If we see 2.6 before April 2003, it will be a major
achievement in the development of the development process itself.

—Zack Brown

Think of It as a Hacksess Point

Wi-Fi (802.11 wireless Ethernet) access points have been around for a while. But
most of them allow rather limited programmability, especially if you want to
make a business out of selling customized ones.

Chipset maker Intersil (www.intersil.com) has walked into this marketplace and
taken care of the opportunity problem by introducing a new self-hosting access
point reference design called PRISM AP. What makes it so marketable is its
operating system: embedded Linux. PRISM AP comes with a whole Linux
development environment on which you can run a web server, a DHCP server,
DHCP client and SNMP server, among other things.

Because the OS is Linux, you can customize units for your own uses or develop
whatever product you like—VPN gateway, bridge, router, mesh network,
whatever—and burn the code into Flash memory. Then you can sell it without
worrying about licensing costs.

In other words, it's hard to imagine anything more equally hackable and
marketable, or in more different ways.

—Doc Searls

http://www.intersil.com

PHPRecipeBook: phprecipebook.sourceforge.net

If you need to keep a recipe book, this is the ticket. You can input ingredients
and the preparation process and save it. When you decide you want to cook
something, the program can generate a list of ingredients in a shopping list and
you can print it out. Now, if you could just ship it off via the Web to a local
grocery store and have the ingredients delivered, you wouldn't even have to
leave the house. Unfortunately, recipes are not included. Requires: web server
with PHP and SQL (PostgreSQL or MySQL) support, SQL server and a web
browser.

—David A. Bandel

Techtables: techtables.sourceforge.net

This particular trouble ticket and asset tracking system is a little different from
some others. It deals fairly exclusively with trouble tickets and assets, not so
much with clients and the the rest. Depending on your needs, this might fill the
bill nicely. Installation and use is simple. If you need to protect anything, you'll
need to implement htpasswords and/or secure web support (easily done).
Requires: web server with PHP and SQL (PostgreSQL or MySQL) support, SQL
server and a web browser.

http://phprecipebook.sourceforge.net
https://secure2.linuxjournal.com/ljarchive/LJ/106/6441f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6441f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/106/6441f1.large.jpg
http://techtables.sourceforge.net

—David A. Bandel

They Said It

HP is talking about how HP-UX will be able to run Linux applications; so is Sun
with Solaris. ISVs are going to be asking themselves, “Why should I bother to
develop for a specific UNIX if I can develop for Linux and it will run on almost all
UNIX platforms?”

—Dan Kusnetsky

Middleware? I think it's something that sits between something that's useful
and something you can understand.

—David Sifry

You need 64-bit support; you need terabyte filesystems. IBM says the Open
Source community will tackle that. I don't think so. Somebody's got to build
that.

—Jonathan Schwartz, Sun Microsystems

[See page 44.]

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

From the Editor

Don Marti

Issue #106, February 2003

New developments for Linux in the Enterprise.

There are two common points of view about Linux in the so-called enterprise.
The first is that Linux is only capable of displacing Microsoft products on cheap
low-end servers, and that proprietary UNIXes with their huge 64-bit address
spaces and big SMP scalability are safe. The second is that Linux is mainly
displacing UNIX, since it's easy to port software from UNIX to Linux, and that
Microsoft with its difficult-to-port-from APIs is safe.

Both points of view are wrong. Nothing is safe. On page 44, Linux is running on
a new 64-processor NUMA system. And, on page 52, Linux is displacing the
nastiest Microsoft server to replace, Exchange—undocumented protocols and
all.

In our December 2002 issue, Douglas B. Maxwell wrote about how he beat the
graphics performance of a large SGI system with $15,000 worth of PCs. This
month, we're celebrating SGI's release of a big Linux box by putting it on our
cover. Do we have the world's shortest attention span? Aren't generic PCs
taking over everything?

If they are, they're not done yet. If you have a big problem that you haven't
figured out how to split into PC-sized chunks, or don't want to take the time to
split into PC-sized chunks, the 512GB of memory on the new SGI Altix 3000
seems like just what you need.

One slogan at SGI is “do science, not computer science”. Do big problems the
way you know how and get better results now. Of course, this is waving a red
flag in front of the commodity cluster faction, and I'm sure we'll soon have
plenty of articles pointing out how you can get previously unclusterable work
done on a cluster.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The diversity of success stories in this issue makes it clear that any company
that tries to compete with Linux in a fair fight will lose. So it's going to be an
unfair fight for a while, with the non-Linux vendors pulling shenanigans such as
bogus software patents, FUD-based marketing, copy-restricted content,
carefully placed “donations” and “campaign contributions”, and who knows
what else.

But most of the companies, and most important, the people, who are
promoting non-Linux legacy products today are going to be part of the Linux
business tomorrow. Since our community will survive and theirs won't, ours
has to be able to welcome and do business with them in the future. So we can't
engage in the same desperate nonsense they are. All we have is the best
software and the truth, and that's plenty.

Finally, the one enterprise that's most important to pulling some people from
just getting by up to knowledge and success is the public library. Your local
library provides educational materials, entertainment, training and community
programs. Now, that important institution's budget won't be wasted on
expensive, inflexible proprietary software. The Koha Project is offering library
cataloging and search software under the GPL, in the same spirit we have
public libraries in the first place. Join your local Friends of the Library and read
Pat Eyler's article on page 58.

Don Marti is editor in chief of Linux Journal and number eight on pigdog.org's
list of “things to say when you're losing a technical argument”.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://pigdog/org
http://pigdog/org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Cruising the Carribean

Doc Searls

Issue #106, February 2003

If you weren't on the boat, here's what happened on Linux Lunacy II.

Our second annual Geek Cruise, Linux Lunacy II, combined master tech classes
and fun shore excursions with a week-long tour of the Western Caribbean. So
far, Linux Journal has sponsored two of Neil Bauman's Geek Cruises. Next
year's cruise will head North, from Seattle up through Alaska's Inside Passage.

On Linux Lunacy II, more than 120 Cruisers boarded Holland America's ms
Maasdam in Ft. Lauderdale on October 20, 2002, for a loop around the Western
Caribbean, stopping at ports of call in Cozumel, the Cayman Islands, Jamaica
and the Bahamas. Sessions were held en route, with attendees gathering in
meeting rooms, dining rooms, bars and theaters. The formats ranged from
keynotes to lectures to master classes to Q&As. Check out the cruise photo
gallery at www.linuxjournal.com/article/6420.

The speaker lineup could hardly be more top-drawer for every subject: Linus
Torvalds and Ted Ts'o on Linux; Randal Schwartz on Perl; Guido van Rossum on
Python and Zope; Steve Oualline on Vi and C++; Dirk Elmendorf on PHP; Greg
Haerr on UI programming and embedded Linux; Eric S. Raymond on open
source, hacker culture and the Zen of UNIX; Brian Carrier on forensics and
Brandon Wiley on ad hoc serverless communities. I did the keynote on “How
Linux Got to Be Everywhere While Nobody Was Watching”. The slides from the
keynote are available on the Linux Journal web site at www.linuxjournal.com/
article/6421.

The settings were friendly too. Neil provided power strips so cruisers could plug
in laptops, projectors and other peripherals. He also arranged with Digital Seas
to provide wireless live internet connectivity, handy for checking out URLs and
doing other research while following a lecture. Each time I checked it,
throughput ran around 150-250KB downstream and 85-120KB upstream. Not

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/000/6420.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6421.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6421.html

bad for a boat connected to the Net by a satellite 23,500 miles above the
Equator.

Greg Haerr attended Ted's “More than You Ever Want to Know about
Filesystems” talk, and he said it, “expanded my understanding of the key details
in the design and implementation of the 2.5 kernel. In conjunction with Linus'
talk, I left with insight into how the kernel guys go about making Linux superior
and a better understanding of the way it's managed.”

Linus spoke three times: once in a long Q&A and two more times on panels. My
ideas about the future of Linux were confirmed by Linus' talks along with other
speakers' presentations on the ship. To see what we're predicting, read “What I
Learned on Linux Lunacy” at www.linuxjournal.com/article/6414.

One of Linus' panels met onshore, in Ocho Rios, Jamaica, with the Jamaica Linux
Users Group (JaLUG). The setting was The Ruins Pub & Internet Café, which is
set back in a jungle of palms and banyan trees beside a perfect waterfall.

That meeting took place early in the morning, after which most of us headed to
Dunn's River Falls, which cascades for hundreds of yards over limestone
boulders on its way to the sea. Dunn's is an interactive river: the idea is to climb
it upstream from bottom to top. It's a little scary but a lot of fun. We probably
set a new record for the number of otherwise smart people carrying digital
cameras up the middle of a cascading jungle river. For a full description of all
the events, see parts 1 and 2 of “Geeks on the Half Shell 2.0: Cruising the New
Dominion with Linus and Friends” (www.linuxjournal.com/article/6419 and
www.linuxjournal.com/article/6422, respectively).

For the next cruise, we're moving the schedule up to September 13, 2003. We
sail out of Seattle for Alaska's Inside Passage aboard Holland America's
flagship, the Amsterdam. “It's an incredible ship”, Neil says—and he ought to

https://secure2.linuxjournal.com/ljarchive/LJ/000/6414.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6419.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6422.html

know. The itinerary includes Victoria, Juneau, Sitka, Ketchikan and Hubbard
Glacier.

Last year our family went on another of Neil's cruises to Alaska. The sights run
from stunning to spectacular. The whole trip flanks jagged snowcapped
mountains feeding the sea with rivers, streams and some of the most
spectacular glaciers in the world. There's nothing quite like floating next to the
business end of a glacier for half a day, watching huge hunks of it “calve” off
into icebergs the size of buildings. And that's just what you do on the boat. The
shore excursions include helicopter trips, dog sledding...all kinds of fun stuff.

Commitments so far suggest there's a good chance Neil will sell out early this
year. Visit the Geek Cruises site www.geekcruises.com to find out more.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.geekcruises.com
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #106, February 2003

Our experts answer your technical questions.

Where's My Printer?

I would like to know how to get OpenOffice to use the system printers. I did a
normal install of SuSE 8.0 Pro and set up an Epson Stylus Photo 1280. When I
installed OpenOffice, the only printer it set up was generic.

—Nathan M. Fowler Jr., nfowler1@bellsouth.net

You may need to run the spadmin program, which is located in the ~/
OpenOffice.org1.0.1/program directory. This is the printer configuration utility
of OpenOffice.

—Felipe E. Barousse Boué, fbarousse@piensa.com

Where's My IP Address?

I have a Linksys router. Red Hat Linux detects the Ethernet port built onto my
motherboard, but I can't for the life of me get it to connect.

—Tim Kuder, tim@kuderized.com

Try Red Hat's netconfig tool. You may need to set DHCP to get the IP address
from a DHCP server instead of declaring one yourself. Then, ping your router's
address; if it works, you are set.

—Felipe E. Barousse Boué, fbarousse@piensa.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:nfowler1@bellsouth.net
mailto:fbarousse@piensa.com
mailto:tim@kuderized.com
mailto:fbarousse@piensa.com

Can I Reboot?

I am in the process of installing Red Hat Linux 7 (using the distribution
packaged in the Red Hat Linux 7 for Dummies book). My installation appears to
have hung after installing 153MB of a 753MB installation. Is it safe to reboot my
computer?

—Marcus, marcus@lesniak.co.uk

I would hope that your computer isn't still waiting for a response to this
request. Yes, it is safe to reboot. However, Linux was not successfully installed,
so you will not be able to boot Linux. It's possible the CD you are installing from
has some corruption.

—Christopher Wingert, cwingert@cwingert-mail.qualcomm.com

If everything hung up, you probably have no choice but to reboot. Are your
installation CDs unscratched? Are you positive your hard disk is in good
condition? Re-install from scratch, and this time select the Check for Bad Blocks
option when creating partitions. This will take longer, but it will test your disk
against some defects.

—Felipe E. Barousse Boué, fbarousse@piensa.com

Can't Boot from CD or Floppy

I have a Sony Vaio PCG F340, and I want to install Slackware on it. Following
some bad advice, I formatted the c: drive. Now anything I put in the CD drive or
floppy drive comes up with an invalid system disk error.

—John Krissinger, kriskrosx@aol.com

Go into your BIOS and change the boot order of your drives. Put the drive you
are installing from, either the floppy or the CD-ROM, ahead of your hard drive.

—Christopher Wingert, cwingert@cwingert-mail.qualcomm.com

I'm not certain Slackware can be installed on your Vaio; those laptops are a bit
hard to support. If you don't get anywhere with it, you may want to try installing
Red Hat, SuSE or Linux-Mandrake. These all have installers that are better at
probing laptop hardware.

—Marc Merlin, marc_bts@google.com

mailto:marcus@lesniak.co.uk
mailto:cwingert@cwingert-mail.qualcomm.com
mailto:fbarousse@piensa.com
mailto:kriskrosx@aol.com
mailto:cwingert@cwingert-mail.qualcomm.com
mailto:marc_bts@google.com

Support for NVIDIA Laptop Video?

Please advise me about installing any version of Linux that can work with my
Dell Inspiron NoteBook computer. It has a UXGA monitor (1600 × 1200 native
resolution) and an NVIDIA GeForce 2 Go video graphics system. Neither Dell nor
Red Hat are of any help. I tried to install earlier versions of Caldera and
Mandrake 9.0, also without success.

—Kamalakar Rao, kmlkr@juno.com

Your main problem is that the good GeForce drivers have to be downloaded
from NVIDIA, because they are not open source. What you want to do is install
your distribution of choice with XFree 4.1 or 4.2. Then go to the NVIDIA web
site, download the closed-source drivers, and follow the install directions:
www.nvidia.com/view.asp?IO=linux_display_1.0-3123.

—Marc Merlin, marc_bts@google.com

How to Set Up DNS and DHCP?

I am trying to set up a Red Hat 7.3 box as a server for my school. I have been
looking for advice about how to set up a DNS and DHCP server.

—Richard Whiteside, Hendel4ever@hotmail.com

Red Hat has some nice tools for configuration of the services you require. Read
the Installation Guide, which is actually quite good. www.redhat.com/docs/
manuals/linux/RHL-7.3-Manual/install-guide.

—Christopher Wingert, cwingert@cwingert-mail.qualcomm.com

You can find excellent tips within the DNS-HOWTO and DHCP-HOWTO. You can
find those and many others in your distribution CD or on-line at tldp.org or on
many other mirrors.

—Mario Bittencourt, mneto@argo.com.br

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:kmlkr@juno.com
http://www.nvidia.com/view.asp?IO=linux_display_1.0-3123
mailto:marc_bts@google.com
mailto:Hendel4ever@hotmail.com
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/install-guide
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/install-guide
mailto:cwingert@cwingert-mail.qualcomm.com
http://tldp.org
mailto:mneto@argo.com.br
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #106, February 2003

ACCPAC Advantage Series 5.0, ProStore Backup Appliance, Zaurus SL-5600 and
more.

ACCPAC Advantage Series 5.0

ACCPAC Advantage Series Enterprise Edition 5.0 is a multitiered, web-based
business management system that provides access to your entire accounting
system using either a browser or the ACCPAC desktop. Enterprise Edition
includes the following functions: system manager, general ledger, accounts
payable, accounts receivable, inventory control, order entry, purchase orders
and US and Canadian payroll. The general ledger consolidations and
intercompany transactions modules also are available. Enterprise edition
provides multicurrency and multilingual support; supports unlimited users; and
offers compatibility with Oracle, IBM DB2 and Pervasive database compatibility.

Contact ACCPAC, 6700 Koll Center Parkway, Third Floor, Pleasanton, California
94566, 925-461-2625, www.accpac.com.

ProStore Backup Appliance

ProMicro and Avail Solutions have partnered on the ProStore Backup
Appliance, which provides data storage, backup and recovery capabilities. The
ProStore appliance is a combination of ProMicro's ProStore NAS server and
Avail's Integrity backup software and automated tape library. ProStore comes
with 360GB of storage capacity, Intel processors, 10/100 Ethernet ports, three
PCI slots and up to six IDE drive bays in a compact 2U form factor. The
integrated eight-cartridge tape library transfers up to 640GB of compressed
data at 6MB/s. All parameters are user-programmable.

Contact ProMicro Solutions, 12635 Danielson Court #203, Poway, California
92064, 866-776-6427, www.promicro.com; Avail Solutions, 2430 Vineyard

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.accpac.com
http://www.promicro.com

Avenue, Suite 205, Escondido, California 92029, 760-743-7200,
www.availsolutions.com.

Zaurus SL-5600

The latest addition to Sharp's Zaurus PDA family is the SL-5600, a business and
wireless-capable PDA for enterprise users. The 5600 has a high-resolution,
color-reflective QVGA LCD screen, a QWERTY keyboard, 64MB of protected
Flash memory, 32MB of SDRAM, dual expansion with CompactFlash, SD/MMC
card slots and an integrated speaker and microphone. The Qtopia-based PDA
also features an Intel XScale 400MHz processor with a 100MHz memory
interface. A virtual mobile hard drive is also built in to the SL-5600, protecting
data, applications and files in Flash memory. The new Zaurus includes drivers
for 802.11b wireless LAN adapters, CDPD wireless modems and 10/100
Ethernet cards.

Contact Sharp Zaurus, 201-529-9459, www.myzaurus.com and
www.sharpusa.com.

SCO Linux 4.0

In its first release since dropping the Caldera name, the SCO Group announced
the availability of SCO Linux 4.0. SCO Linux 4.0 is based on UnitedLinux 1.0,
designed for mission-critical business applications. SCO Linux also comes with
software, support and services available through more than 16,000 resellers for
small- to medium-sized businesses and replicated branch sites. Four editions of
SCO Linux 4.0 are available—Base, Classic, Business and Enterprise—each
coming with a one-year support plan.

Contact The SCO Group, 355 South 520 West, Suite 100, Lindon, Utah 84042,
801-765-4999, www.sco.com.

Cubix BladeStation

The BladeStation from Cubix Corporation is a dual-Pentium 4 Xeon blade server
with up to four PCI-X/PCI slots per blade. BladeStation also has a 533MHz front-
side bus and supports up to four SCSI drives within each blade. Up to seven
dual-Xeon blades can be housed in a 6U rack, using only 21 inches of rack
depth. Each blade features one full-length 64-bit 133/100MHz PCI-X extension
slot, up to 8GB of DDR RAM, a 1GB Ethernet port and two 10/100 Ethernet
ports. The PowerStation power supply array provides redundant n+1 power.

Contact Cubix Corporation, 2800 Lockheed Way, Carson City, Nevada 89706,
800-829-0550 (toll-free), www.cubix.com.

http://www.availsolutions.com
http://www.myzaurus.com
http://www.sharpusa.com
http://www.sco.com
http://www.cubix.com

Frequency Clock: Free Media System

The Frequency Clock: Free Media System is an open-source software system for
managing streaming audio and video channels. Users can organize their
streaming-media files into dynamic channels that can then be played back
using the web-based streaming-media player. Created by Radioqualia, the key
features of the Free Media System include a customized streaming media
player that can handle different file types, searchable archives and real-time
statistical analysis. All streaming media file types, including Windows Media,
Real and QuickTime, can be played in a single player, the Frequency Clock
Player. In addition, users can customize the Player to fit their design needs
rather than fitting the design to the needs of a specific player.

Contact The Frequency Clock, radioqualia@va.com.au, radioqualia.va.com.au/
freqclock/central.html.

Dell 1655MC

The 1655MC is Dell's latest entry in the blade server market and has the
equivalent of six two-way 1U servers in a 3U blade enclosure. The 1655MC,
which looks like a thick blade in a box, supports one or two 1.266GHz Pentium
III processors, up to 2GB of SDRAM and one or two Ultra 320 SCSI drives. The
chipset is a ServerWorks ServerSet LE30, and the 1655MC also has two
integrated Broadcom Gigabit Ethernet interfaces and a USB port. Dell's chassis,
which accommodates six 1655MCs, has two hot-plug power supplies for 1+1
redundancy. It includes a built-in KVM switch, plus either one or two managed
Ethernet switches. The 1655MC is available with Red Hat 7.3, 8.0 or Advanced
Server.

Contact Dell Computer Corporation, One Dell Way, Round Rock, Texas 78682,
800-915-3355 (toll-free), www.dell.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:radioqualia@va.com.au
http://radioqualia.va.com.au/freqclock/central.html
http://radioqualia.va.com.au/freqclock/central.html
http://www.dell.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/106/toc106.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Departments
	Koha: a Gift to Libraries from New Zealand
	Pat Eyler
	History of the Project
	Using and Maintaining Koha
	The Business Case for Libraries
	Free Software and Librarians, a Natural
Match
	Looking Ahead

	Understanding and Replacing Microsoft Exchange
	Tom Adelstein
	E-Mail, the “Killer Application”
	Forty-Five Days to Create a Solution
	Surprising the Development Team
	Technology Challenges Not for the Faint of
Heart
	Forget the Transport and Focus on the
Data
	The Different Faces of Outlook
	TNEF
	Exchange Client Extensions
	Exchange
	Out-Scaling Microsoft Using Berkeley DB
	Replacing Exchange

	Scaling Linux to New Heights: the SGI Altix 3000 System
	Steve Neuner
	Hardware and System Architecture
Background
	Preparing Linux for a New Hardware
Platform
	A Closer Look at Linux on Big Iron
	Other Enhancements to Linux for HPC
	Conclusion

	Inside the Intel Compiler
	Dale Schouten
	Xinmin Tian
	Aart Bik
	Milind Girkar
	Traditional Compiler Optimizations
	Profiling Optimizations
	Intra-Register Vectorization
	OpenMP and Auto-Parallelization
	CPU-Dispatch
	Language Extensions
	Conclusions
	Acknowledgements

	Large-Scale Mail with Postfix, OpenLDAP and Courier
	Dave Dribin
	Keith Garner
	The Big Picture
	Mailbox Location
	LDAP Directory Design
	Tree Structure
	Choosing a Schema
	Courier Schema
	Access Control
	Implementation
	Configuring slapd
	Creating the Directory Tree
	Adding a Domain
	Adding an Account
	Postfix
	Configuring Postfix
	Aliases
	Accounts
	Courier
	Administration
	Account Creation Notes
	Account Deletion Notes

	Linux from Kindergarten to High School
	Michael Surran

	Removing Red-Eye with The GIMP
	Eric Jeschke

	A Linux-Based Steam Turbine Test Bench
	Alexandr E. Bravo
	Computer and Measurement Equipment
Structure
	Why Linux?
	The Network
	Conclusion

	The USB Serial Driver Layer
	Greg Kroah-Hartman
	USB Serial Layer's History
	Registering and Unregistering a USB Serial
Driver
	struct usb_serial_device_type Explained
	urb Callback Function Pointers
	Conclusion
	Acknowledgements

	The Linux USB Input Subsystem, Part I
	Brad Hards
	What Is the Input Subsystem?
	How We Got Here
	Under the Hood—Understanding the Kernel
Internals
	Handlers—Getting to User Space
	Acknowledgements

	Choosing Tools
	Reuven M. Lerner
	mod_perl/Mason
	Java and J2EE
	Zope
	OpenACS
	Conclusion

	Charting the Enterprise
	Marcel Gagné

	An Introduction to FreeS/WAN, Part II
	Mick Bauer
	Architecture: Site-to-Site VPNs
	An Example Scenario
	Exchanging Host Keys
	Setting Up ipsec.conf
	Firewalls and NAT
	Conclusion

	Caring Less
	Doc Searls

	Don't Code for Linux
	Haavard Nord
	Single-Platform Development Is Expensive
	Single-Platform Development Closes Doors
	Single-Platform Development Does Not Encourage
Mobile Deployment

	Letters
	Various
	Cluetrain Station: ASA
	Please Run Microsoft Ads!
	Memory Leaks No More
	Sorry, Tim
	We Are the World
	Game Articles, Please
	Back to Brazil

	Upfront
	Various
	diff -u: What's New in Kernel
Development
	Think of It as a Hacksess Point
	They Said It

	From the Editor
	Don Marti

	Cruising the Carribean
	Doc Searls

	Best of Technical Support
	Various
	Where's My Printer?
	Where's My IP Address?
	Can I Reboot?
	Can't Boot from CD or Floppy
	Support for NVIDIA Laptop Video?
	How to Set Up DNS and DHCP?

	New Products
	Heather Mead
	ACCPAC Advantage Series 5.0
	ProStore Backup Appliance
	Zaurus SL-5600
	SCO Linux 4.0
	Cubix BladeStation
	Frequency Clock: Free Media System
	Dell 1655MC

